NADPH oxidase participates in the oxidative damage caused by fluoride in rat spermatozoa. Protective role of α-tocopherol. 2011

Jeannett A Izquierdo-Vega, and Manuel Sánchez-Gutiérrez, and Luz María Del Razo
Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F. 07360, Mexico.

Fluorosis, caused by drinking water contaminated with inorganic fluoride, is a public health problem in many areas around the world. The aim of this study was to evaluate oxidative stress in spermatozoa caused by fluoride and NADPH oxidase in relationship to fluoride. Four experimental groups of male Wistar rats were administered with deionized water, NaF, at a dose equivalent to 5 mg fluoride kg⁻¹ per 24 h, NaF plus 20 mg kg⁻¹ per 24 h α-tocopherol, or α-tocopherol alone for 60 days. We evaluated several spermatozoa parameters in the four groups: standard quality analysis, superoxide dismutase (SOD) activity, the generation of reactive oxygen species (ROS), NADPH oxidase activity, TBARS formation, ultrastructural analyses of spermatozoa using transmission electron microscopy and in vitro fertilization (IVF) capacity. After 60 days of treatment, urinary excretion of fluoride was not modified by α-tocopherol. Spermatozoa from fluoride-treated rats exhibited a significant increase in the generation of ROS, accompanied by a significant increase in NADPH oxidase activity. The increase in ROS generation was significantly diminished by diphenylene iodonium, an inhibitor of NADPH oxidase activity. In contrast, a decrease in the generation of ROS, an increase in SOD activity and the prevention of TBARS formation process were observed in spermatozoa of rats exposed to fluoride plus α-tocopherol. Finally, α-tocopherol treatment prevented the IVF incapacity observed in the spermatozoa from fluoride-treated rats. These results suggest that NADPH oxidase participates in the oxidative stress damage caused by subchronic exposure to fluoride.

UI MeSH Term Description Entries
D008297 Male Males
D005459 Fluorides Inorganic salts of hydrofluoric acid, HF, in which the fluorine atom is in the -1 oxidation state. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Sodium and stannous salts are commonly used in dentifrices. Fluoride
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D017392 Thiobarbituric Acid Reactive Substances Low-molecular-weight end products, probably malondialdehyde, that are formed during the decomposition of lipid peroxidation products. These compounds react with thiobarbituric acid to form a fluorescent red adduct. TBARs
D046529 Microscopy, Electron, Transmission Electron microscopy in which the ELECTRONS or their reaction products that pass down through the specimen are imaged below the plane of the specimen. Electron Diffraction Microscopy,Electron Microscopy, Transmission,Microscopy, Electron Diffraction,Transmission Electron Microscopy,Diffraction Microscopy, Electron,Microscopy, Transmission Electron
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Jeannett A Izquierdo-Vega, and Manuel Sánchez-Gutiérrez, and Luz María Del Razo
April 2011, International journal of experimental pathology,
Jeannett A Izquierdo-Vega, and Manuel Sánchez-Gutiérrez, and Luz María Del Razo
January 2001, Polish journal of pharmacology,
Jeannett A Izquierdo-Vega, and Manuel Sánchez-Gutiérrez, and Luz María Del Razo
January 2010, Neuroscience letters,
Jeannett A Izquierdo-Vega, and Manuel Sánchez-Gutiérrez, and Luz María Del Razo
January 1994, Life sciences,
Jeannett A Izquierdo-Vega, and Manuel Sánchez-Gutiérrez, and Luz María Del Razo
December 2007, Inflammopharmacology,
Jeannett A Izquierdo-Vega, and Manuel Sánchez-Gutiérrez, and Luz María Del Razo
February 2021, Antioxidants (Basel, Switzerland),
Jeannett A Izquierdo-Vega, and Manuel Sánchez-Gutiérrez, and Luz María Del Razo
July 2020, Neuropharmacology,
Jeannett A Izquierdo-Vega, and Manuel Sánchez-Gutiérrez, and Luz María Del Razo
April 2018, Drug and chemical toxicology,
Jeannett A Izquierdo-Vega, and Manuel Sánchez-Gutiérrez, and Luz María Del Razo
September 2014, World journal of gastroenterology,
Jeannett A Izquierdo-Vega, and Manuel Sánchez-Gutiérrez, and Luz María Del Razo
January 2012, PloS one,
Copied contents to your clipboard!