Establishment of specific antibody producing human lines by antigen preselection and EBV-transformation. 1978

M Steinitz, and S Koskimies, and G Klein, and O Mäkelä

UI MeSH Term Description Entries
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D006241 Haptens Small antigenic determinants capable of eliciting an immune response only when coupled to a carrier. Haptens bind to antibodies but by themselves cannot elicit an antibody response. Hapten,Contact-Sensitizing Agents,Agents, Contact-Sensitizing,Contact Sensitizing Agents
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody

Related Publications

M Steinitz, and S Koskimies, and G Klein, and O Mäkelä
October 1986, Science (New York, N.Y.),
M Steinitz, and S Koskimies, and G Klein, and O Mäkelä
August 1984, Journal of immunological methods,
M Steinitz, and S Koskimies, and G Klein, and O Mäkelä
January 1982, Current topics in microbiology and immunology,
M Steinitz, and S Koskimies, and G Klein, and O Mäkelä
October 1983, Journal of immunology (Baltimore, Md. : 1950),
M Steinitz, and S Koskimies, and G Klein, and O Mäkelä
March 1985, Nihon Naibunpi Gakkai zasshi,
M Steinitz, and S Koskimies, and G Klein, and O Mäkelä
September 1986, Immunology letters,
M Steinitz, and S Koskimies, and G Klein, and O Mäkelä
January 2017, Methods in molecular biology (Clifton, N.J.),
M Steinitz, and S Koskimies, and G Klein, and O Mäkelä
March 1990, Hua xi yi ke da xue xue bao = Journal of West China University of Medical Sciences = Huaxi yike daxue xuebao,
M Steinitz, and S Koskimies, and G Klein, and O Mäkelä
May 1988, Immunology today,
Copied contents to your clipboard!