Derivatized silica spheres as immunospecific markers for high resolution labeling in electron microscopy. 1978

K R Peters, and G Rutter, and H H Gschwender, and W Haller

For high resolution labeling of influenza virus cell surface antigens on HeLa cells, an immunospecific marker is used with silica sphere cores of 13--14 nm average diameter. These markers are formed using commercially available silica sphere sols. Two other size ranges are available, 7--8 nm and 22--25 nm. The steps for chemical derivatization are described in detail. Amino and aldehyde functions are covalently introduced onto the sphere surface. Sols of these derivatized silica spheres (DSS) are physicochemically stable and therefore usable for years. Coupling of IgG to DSS followed by permeation chromatography on controlled pore glass results in size-defined immunospecific silica sphere markers (DSS-markers). Saturation labeling of cell surface antigens on HeLa cells on cover slips is obtained with the final sphere concentration of 10(14) DSS-marker/cm3 within 20 min. With usual protective conditions, the marker stability and labeling ability are preserved for months. The visibility and the fine structure of the DSS-marker on cell surfaces are shown by using transmission electron microscopy (TEM) with stereo replicas and ultrathin sections.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D009980 Influenza A virus The type species of the genus ALPHAINFLUENZAVIRUS that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces. Alphainfluenzavirus influenzae,Avian Orthomyxovirus Type A,FLUAV,Fowl Plague Virus,Human Influenza A Virus,Influenza Virus Type A,Influenza Viruses Type A,Myxovirus influenzae-A hominis,Myxovirus influenzae-A suis,Myxovirus pestis galli,Orthomyxovirus Type A,Orthomyxovirus Type A, Avian,Orthomyxovirus Type A, Human,Orthomyxovirus Type A, Porcine,Pestis galli Myxovirus,Fowl Plague Viruses,Influenza A viruses,Myxovirus influenzae A hominis,Myxovirus influenzae A suis,Myxovirus, Pestis galli,Myxoviruses, Pestis galli,Pestis galli Myxoviruses,Plague Virus, Fowl,Virus, Fowl Plague
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell
D000956 Antigens, Viral Substances elaborated by viruses that have antigenic activity. Viral Antigen,Viral Antigens,Antigen, Viral
D012822 Silicon Dioxide Transparent, tasteless crystals found in nature as agate, amethyst, chalcedony, cristobalite, flint, sand, QUARTZ, and tridymite. The compound is insoluble in water or acids except hydrofluoric acid. Silica,Aerosil,Aerosil 380,Cristobalite,Quso G-32,Quso G32,Tridymite,380, Aerosil,Dioxide, Silicon,G32, Quso,Quso G 32

Related Publications

K R Peters, and G Rutter, and H H Gschwender, and W Haller
February 1975, The Journal of cell biology,
K R Peters, and G Rutter, and H H Gschwender, and W Haller
May 1974, Nature,
K R Peters, and G Rutter, and H H Gschwender, and W Haller
December 1976, Ultramicroscopy,
K R Peters, and G Rutter, and H H Gschwender, and W Haller
January 1970, Journal of electron microscopy,
K R Peters, and G Rutter, and H H Gschwender, and W Haller
January 1962, Biofizika,
K R Peters, and G Rutter, and H H Gschwender, and W Haller
November 1992, Ultramicroscopy,
K R Peters, and G Rutter, and H H Gschwender, and W Haller
February 2017, Reports on progress in physics. Physical Society (Great Britain),
K R Peters, and G Rutter, and H H Gschwender, and W Haller
January 1976, Journal of supramolecular structure,
K R Peters, and G Rutter, and H H Gschwender, and W Haller
May 1971, Journal of ultrastructure research,
K R Peters, and G Rutter, and H H Gschwender, and W Haller
March 2012, Nanoscale,
Copied contents to your clipboard!