Hapten-sandwich labeling. II. Immunospecific attachment of cell surface markers suitable for scanning electron microscopy. 1975

M K Nemanic, and D P Carter, and D R Pitelka, and L Wofsy

A hapten-sandwich procedure has been used for immunospecific labeling of cell surface antigens with markers visible by scanning electron microscopy. Antihapten antibody was used to link hapten-modified tobacco mosaic virus, bushy stunt virus, or hemocyanin to hapten-modified human erythrocytes. The antihapten antibody bridge was also used to link the hapten-virus marker to hapten-modified antibodies against mammary tumor virus on mouse mammary tumor cells, or against immunoglobulin receptors on mouse splenic lymphocytes. In all cases, labeling was highly specific. With this technique, it is possible to (a) compare morphological features of cells bearing differing cell surface antigens, and (b) examine the arrangement of specific antigenic sites on a cell surface or their distribution relative to membrane structures such as microvilli.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008324 Mammary Tumor Virus, Mouse The type species of BETARETROVIRUS commonly latent in mice. It causes mammary adenocarcinoma in a genetically susceptible strain of mice when the appropriate hormonal influences operate. Bittner Virus,Mammary Cancer Virus,Mouse mammary tumor virus,Mammary Tumor Viruses, Mouse
D008325 Mammary Neoplasms, Experimental Experimentally induced mammary neoplasms in animals to provide a model for studying human BREAST NEOPLASMS. Experimental Mammary Neoplasms,Neoplasms, Experimental Mammary,Experimental Mammary Neoplasm,Mammary Neoplasm, Experimental,Neoplasm, Experimental Mammary
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010942 Plant Viruses Viruses parasitic on plants. Phytophagineae,Plant Virus,Virus, Plant,Viruses, Plant

Related Publications

M K Nemanic, and D P Carter, and D R Pitelka, and L Wofsy
November 1976, Journal of immunology (Baltimore, Md. : 1950),
M K Nemanic, and D P Carter, and D R Pitelka, and L Wofsy
August 1974, The Journal of experimental medicine,
M K Nemanic, and D P Carter, and D R Pitelka, and L Wofsy
January 1978, Contemporary topics in molecular immunology,
M K Nemanic, and D P Carter, and D R Pitelka, and L Wofsy
August 1978, The Journal of cell biology,
M K Nemanic, and D P Carter, and D R Pitelka, and L Wofsy
January 1979, Journal of immunological methods,
M K Nemanic, and D P Carter, and D R Pitelka, and L Wofsy
December 1972, Proceedings of the National Academy of Sciences of the United States of America,
M K Nemanic, and D P Carter, and D R Pitelka, and L Wofsy
January 1976, Journal of supramolecular structure,
M K Nemanic, and D P Carter, and D R Pitelka, and L Wofsy
January 2016, Methods in molecular biology (Clifton, N.J.),
M K Nemanic, and D P Carter, and D R Pitelka, and L Wofsy
May 1980, The Histochemical journal,
M K Nemanic, and D P Carter, and D R Pitelka, and L Wofsy
May 1974, Nature,
Copied contents to your clipboard!