Maturation of pig oocytes: observations on membrane potential. 1990

M Mattioli, and B Barboni, and M L Bacci, and E Seren
Istituto di Fisiologia Veterinaria, Bologna, Italy.

The membrane-potential changes of pig oocytes during maturation are described. Cumulus-enclosed oocytes have a resting potential of -41.81 +/- 0.60 mV; the removal of cumulus cells caused this potential to drop to -30.95 +/- 0.43 mV. Adding LH to the culture medium did not influence the potential of denuded oocytes but depolarized the potential of cumulus-enclosed oocytes to -32.90 +/- 0.43 mV. FSH did not affect the membrane potential of denuded or cumulus-enclosed oocytes, but significantly reduced the amplitude of the depolarization induced by LH. The effect of gonadotropins on cultured granulosa cells was also investigated. Plated granulosa cells have a resting potential of -45.21 +/- 0.72 mV, similar to that of cumulus-enclosed oocytes. As recorded in cumulus-enclosed oocytes, LH depolarized granulosa cell membrane potential (-30.33 +/- 0.69 mV) and FSH reduced this effect. To evaluate if oocyte maturation in vivo is accompanied by membrane-potential depolarization, follicular growth and oocyte maturation were induced in 6 prepubertal gilts by using an eCG-hCG treatment. Twenty hours after the beginning of oocyte maturation in vivo (induced by hCG), the membrane potential of the oocyte was depolarized to -28.84 +/- 1.01 mV, a value similar to that observed in vitro. These data indicate that both LH and FSH can influence the membrane potential of follicular somatic cells and, consequently, that of the oocyte. The electrical coupling between somatic cell and oocyte may represent a means by which the gonadotropin message is passed to the germinal cell by the somatic compartment.

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006107 Granulosa Cells Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH). Cell, Granulosa,Cells, Granulosa,Granulosa Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog

Related Publications

M Mattioli, and B Barboni, and M L Bacci, and E Seren
June 1977, Developmental biology,
M Mattioli, and B Barboni, and M L Bacci, and E Seren
September 2003, Reproductive medicine and biology,
M Mattioli, and B Barboni, and M L Bacci, and E Seren
March 1994, Journal of reproduction and fertility,
M Mattioli, and B Barboni, and M L Bacci, and E Seren
December 1987, Zentralblatt fur Veterinarmedizin. Reihe A,
M Mattioli, and B Barboni, and M L Bacci, and E Seren
January 2004, Methods in molecular biology (Clifton, N.J.),
M Mattioli, and B Barboni, and M L Bacci, and E Seren
May 1986, Journal of reproduction and fertility,
M Mattioli, and B Barboni, and M L Bacci, and E Seren
January 2002, Theriogenology,
M Mattioli, and B Barboni, and M L Bacci, and E Seren
September 1989, Shi yan sheng wu xue bao,
M Mattioli, and B Barboni, and M L Bacci, and E Seren
May 2004, Zygote (Cambridge, England),
M Mattioli, and B Barboni, and M L Bacci, and E Seren
September 2003, Animal reproduction science,
Copied contents to your clipboard!