[Experimental analysis of membrane potential changes during maturation of Bufo bufo gargarizans oocytes]. 1989

J X Zhao, and J K Tso, and Y L Shih, and W P Wang

The full-grown oocytes obtained from toad (bufo bufo gargarizans) submitted in hibernation state or reared at 25-30 degrees C for several months, named hibernation oocyte or high temperature oocyte, had a membrane potential of -41.51 +/- 0.77 mV and -43.83 +/- 1.39 mV in Ringer's solution respectively. The hibernation oocytes underwent GVBD (germinal vesicle breakdown) and membrane depolarization at 19 +/- 1 degree C after progesterone stimulation. The membrane potential was about -20 mV at the period of GVBD, and -10 mV or so at 20 hours after the hormone treatment. However, the high temperature oocytes did not undergo GVBD, their membrane potential decreased before the fourth hour after treatment with progesterone and then recovered. If the hibernation oocytes were preincubated at 37-38 degrees C for 13 hours prior to the culture in the medium containing progesterone (10(-6)M, 37-38 degrees C), no GVBD was observed and the membrane depolarized before the fourth hour after treatment with progesterone then recovered, but MPF was detectable in the cytoplasm (unpublished). Both GVBD and membrane depolarization appeared in the hibernation oocytes and high temperature oocytes after injection of MPF. The time required for the hibernation oocytes injected MPF to attain the membrane potential about -20 mV was 4 hours earlier than that of progesterone treatment. It was just the time required for the appearance of MPF in the cytoplasm of oocytes treated with the hormone. It was noticed in our precedent article that a factor which appeared in the cytoplasm of high temperature oocytes differed from MPF. The factor was called Hibernation Oocyte Mature Promoting Factor (HOMPF).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D002023 Bufo bufo A species of the true toads, Bufonidae, widely distributed in the United States and Europe. Toad, Common,Common Toad,Common Toads,Toads, Common
D005260 Female Females
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006605 Hibernation The dormant state in which some warm-blooded animal species pass the winter. It is characterized by narcosis and by sharp reduction in body temperature and metabolic activity and by a depression of vital signs. Hibernation, Artificial,Induced Hibernation,Artificial Hibernation,Artificial Hibernations,Hibernation, Induced,Hibernations,Induced Hibernations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016200 Maturation-Promoting Factor Protein kinase that drives both the mitotic and meiotic cycles in all eukaryotic organisms. In meiosis it induces immature oocytes to undergo meiotic maturation. In mitosis it has a role in the G2/M phase transition. Once activated by CYCLINS; MPF directly phosphorylates some of the proteins involved in nuclear envelope breakdown, chromosome condensation, spindle assembly, and the degradation of cyclins. The catalytic subunit of MPF is PROTEIN P34CDC2. Histone H1 Kinase, M-Phase-Specific,M Phase-Promoting Factor,Mitosis-Promoting Factor,Histone H1 Kinase, Growth-Associated,Histone H1 Kinase, Growth Associated,Histone H1 Kinase, M Phase Specific,M Phase Promoting Factor,Maturation Promoting Factor,Mitosis Promoting Factor

Related Publications

J X Zhao, and J K Tso, and Y L Shih, and W P Wang
October 2006, Sheng li xue bao : [Acta physiologica Sinica],
J X Zhao, and J K Tso, and Y L Shih, and W P Wang
December 1987, Shi yan sheng wu xue bao,
J X Zhao, and J K Tso, and Y L Shih, and W P Wang
August 1999, Zygote (Cambridge, England),
J X Zhao, and J K Tso, and Y L Shih, and W P Wang
December 1998, Biocell : official journal of the Sociedades Latinoamericanas de Microscopia Electronica ... et. al,
J X Zhao, and J K Tso, and Y L Shih, and W P Wang
October 1992, Sheng li xue bao : [Acta physiologica Sinica],
J X Zhao, and J K Tso, and Y L Shih, and W P Wang
March 2014, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica,
J X Zhao, and J K Tso, and Y L Shih, and W P Wang
November 2001, Zygote (Cambridge, England),
J X Zhao, and J K Tso, and Y L Shih, and W P Wang
April 1998, Biocell : official journal of the Sociedades Latinoamericanas de Microscopia Electronica ... et. al,
J X Zhao, and J K Tso, and Y L Shih, and W P Wang
August 1990, Biology of reproduction,
Copied contents to your clipboard!