Two genes that regulate exopolysaccharide production in Rhizobium meliloti. 1990

H J Zhan, and J A Leigh
Department of Microbiology SC-42, University of Washington, Seattle 98195.

We describe a new Rhizobium meliloti gene, exoX, that regulates the synthesis of the exopolysaccharide, succinoglycan, exoX resembled the psi gene of R. leguminosarum bv. phaseoli and the exoX gene of Rhizobium sp. strain NGR234 in its ability to inhibit exopolysaccharide synthesis when present in multiple copies, exoX did not appear to regulate the expression of exoP. The effect of exoX was counterbalanced by another R. meliloti gene, exoF. exoF is equivalent to Rhizobium sp. strain NGR234 exoY and resembles R. leguminosarum bv. phaseoli pss2 in its mutant phenotype and in portions of its deduced amino acid sequence. The effect of exoF on the succinoglycan-inhibiting activity of exoX depended on the relative copy numbers of the two genes. exoX-lacZ fusions manifested threefold-higher beta-galactosidase activities in exoF backgrounds than in the wild-type background. exoX mutants produced increased levels of succinoglycan. However, the exoF gene was required for succinoglycan synthesis even in an exoX mutant background. exoF did not affect the expression of exoP. Strains containing multicopy exoX formed non-nitrogen-fixing nodules on alfalfa that resembled nodules formed by exo mutants defective in succinoglycan synthesis. exoX mutants formed nitrogen-fixing nodules, indicating that, if the inhibition of succinoglycan synthesis within the nodule is necessary for nitrogen fixation, then exoX is not required for this inhibition. We present indirect evidence that succinoglycan synthesis within the nodule is not necessary for bacteroid function.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011135 Polysaccharides, Bacterial Polysaccharides found in bacteria and in capsules thereof. Bacterial Polysaccharides
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D012231 Rhizobium A genus of gram-negative, aerobic, rod-shaped bacteria that activate PLANT ROOT NODULATION in leguminous plants. Members of this genus are nitrogen-fixing and common soil inhabitants.
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction

Related Publications

H J Zhan, and J A Leigh
September 1985, Proceedings of the National Academy of Sciences of the United States of America,
H J Zhan, and J A Leigh
January 1997, Applied and environmental microbiology,
H J Zhan, and J A Leigh
January 1994, Molecular plant-microbe interactions : MPMI,
H J Zhan, and J A Leigh
June 1991, Journal of bacteriology,
H J Zhan, and J A Leigh
March 1998, Applied and environmental microbiology,
Copied contents to your clipboard!