The regulation of exopolysaccharide production is important at two levels of nodule development in Rhizobium meliloti. 1994

D A Ozga, and J C Lara, and J A Leig
Department of Microbiology, University of Washington, Seattle 98195.

We show that two exopolysaccharide overproducing Tn5 mutants of Rhizobium meliloti, exoR and exoS, have distinct symbiotic defects. While the exoR mutant is unable to colonize nodules, the exoS mutant retains that ability but varies in its ability to produce nitrogen-fixing nodules. We correlate these defects with different degrees of exopolysaccharide overproduction and growth impairment. We further show that the exoR mutant is able to enter developing infection threads but is unable to invade nodule cells. The exoR mutant gives rise to spontaneous pseudorevertants containing second-site suppressor mutations that decrease exopolysaccharide synthesis. These pseudorevertants form nitrogen-fixing nodules. Although the suppressor mutations have the opposite effect on exopolysaccharide production compared to the exoS::Tn5 mutation, they consistently map to the exoS::Tn5 region and belong to the same genetic complementation group as defined by transposon insertion mutations. The effect of the suppressor mutations on exopolysaccharide production is correlated with effects on the expression of exo genes involved in exopolysaccharide synthesis. Finally, we provide evidence that the exoR gene is not required for the regulation of exopolysaccharide synthesis by ammonia.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009586 Nitrogen Fixation The process in certain BACTERIA; FUNGI; and CYANOBACTERIA converting free atmospheric NITROGEN to biologically usable forms of nitrogen, such as AMMONIA; NITRATES; and amino compounds. Diazotrophy,Diazotrophic Activity,Dinitrogen Fixation,N2 Fixation,Activities, Diazotrophic,Activity, Diazotrophic,Diazotrophic Activities,Fixation, Dinitrogen,Fixation, N2,Fixation, Nitrogen
D011134 Polysaccharides Long chain polymeric CARBOHYDRATES composed of MONOSACCHARIDES linked by glycosidic bonds. Glycan,Glycans,Polysaccharide
D011135 Polysaccharides, Bacterial Polysaccharides found in bacteria and in capsules thereof. Bacterial Polysaccharides
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial
D016153 Genes, Suppressor Genes that have a suppressor allele or suppressor mutation (SUPPRESSION, GENETIC) which cancels the effect of a previous mutation, enabling the wild-type phenotype to be maintained or partially restored. For example, amber suppressors cancel the effect of an AMBER NONSENSE MUTATION. Amber Suppressor Genes,Frameshift Suppressor Genes,Genes, Amber Suppressor,Genes, Frameshift Suppressor,Genes, Nonsense Mutation Suppressor,Genes, Ochre Suppressor,Genes, Second-Site Suppressor,Nonsense Mutation Suppressor Genes,Ochre Suppressor Genes,Second-Site Suppressor Genes,Genes, Opal Suppressor,Suppressor Genes,Amber Suppressor Gene,Frameshift Suppressor Gene,Gene, Amber Suppressor,Gene, Frameshift Suppressor,Gene, Ochre Suppressor,Gene, Opal Suppressor,Gene, Second-Site Suppressor,Gene, Suppressor,Genes, Second Site Suppressor,Ochre Suppressor Gene,Opal Suppressor Gene,Opal Suppressor Genes,Second Site Suppressor Genes,Second-Site Suppressor Gene,Suppressor Gene,Suppressor Gene, Amber,Suppressor Gene, Frameshift,Suppressor Gene, Ochre,Suppressor Gene, Opal,Suppressor Gene, Second-Site,Suppressor Genes, Amber,Suppressor Genes, Frameshift,Suppressor Genes, Ochre,Suppressor Genes, Opal,Suppressor Genes, Second-Site
D016962 Sinorhizobium meliloti A species of gram-negative, aerobic bacteria that causes formation of root nodules on some, but not all, types of sweet clover, MEDICAGO SATIVA, and fenugreek. Ensifer meliloti,Rhizobium meliloti

Related Publications

D A Ozga, and J C Lara, and J A Leig
September 1990, Journal of bacteriology,
D A Ozga, and J C Lara, and J A Leig
February 1990, Plant physiology,
D A Ozga, and J C Lara, and J A Leig
June 1992, Proceedings of the National Academy of Sciences of the United States of America,
D A Ozga, and J C Lara, and J A Leig
March 1998, Applied and environmental microbiology,
D A Ozga, and J C Lara, and J A Leig
June 1991, Microbiologia (Madrid, Spain),
D A Ozga, and J C Lara, and J A Leig
February 2000, Journal of bacteriology,
D A Ozga, and J C Lara, and J A Leig
January 1997, Applied and environmental microbiology,
Copied contents to your clipboard!