Improvement of the developmental ability of nuclear transfer embryos by using blastomeres from in vitro fertilized embryos selected according to the early developmental stage and cell division status as donor cells in cattle. 2011

Yuji Goto, and Satoko Matoba, and Kei Imai, and Masaya Geshi
National Institute of Livestock and Grassland Science, Nagano, Japan.

This study was conducted to improve the developmental ability of nuclear transfer (NT) embryos by using blastomeres from in vitro fertilized (IVF) embryos with high quality as donor cells. The IVF embryos selected at the 2-cell stage at 24-h postinsemination (hpi) and again at the ≥8-cell stage at 48 hpi (Selected-IVF-embryos) showed the highest blastocyst formation rate among embryos. When blastomeres from the Selected-IVF-embryos (Selected-NT group) or Nonselected-IVF-embryos (Non-selected-NT group) were used as donor cells for NT, the blastocyst formation rate in the Selected-NT group (25.6%) was significantly higher than that in the Non-selected-NT group (13.5%). When blastomeres from the Selected-IVF-embryos at 108 (contained many cells before cell division) and 126 hpi (contained many cells immediately after cell division) were used as donor cells for NT (108- and 126-NT groups, respectively), the 126-NT group showed a significantly higher blastocyst formation rate (32.1%) than the 108-NT group (16.8%). Embryo transfer of blastocysts in the 126-NT group showed that 11 of 23 recipients became pregnant; nine calves were obtained. For the NT embryos reconstructed using in vivo derived embryos, 9 of 20 recipients became pregnant; seven calves were obtained. These results indicate that the blastocyst formation rate of NT embryos can be improved by using blastomeres from IVF embryos selected at the early developmental stage, especially immediately after cell division, and that the resultant NT embryos have a high developmental ability to progress to term that is comparable to NT embryos reconstructed using in vivo derived embryos.

UI MeSH Term Description Entries
D001757 Blastomeres Undifferentiated cells resulting from cleavage of a fertilized egg (ZYGOTE). Inside the intact ZONA PELLUCIDA, each cleavage yields two blastomeres of about half size of the parent cell. Up to the 8-cell stage, all of the blastomeres are totipotent. The 16-cell MORULA contains outer cells and inner cells. Blastocytes,Blastocyte,Blastomere
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005260 Female Females
D005307 Fertilization in Vitro An assisted reproductive technique that includes the direct handling and manipulation of oocytes and sperm to achieve fertilization in vitro. Test-Tube Fertilization,Fertilizations in Vitro,In Vitro Fertilization,Test-Tube Babies,Babies, Test-Tube,Baby, Test-Tube,Fertilization, Test-Tube,Fertilizations, Test-Tube,In Vitro Fertilizations,Test Tube Babies,Test Tube Fertilization,Test-Tube Baby,Test-Tube Fertilizations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D047108 Embryonic Development Morphological and physiological development of EMBRYOS. Embryo Development,Embryogenesis,Postimplantation Embryo Development,Preimplantation Embryo Development,Embryonic Programming,Post-implantation Embryo Development,Postnidation Embryo Development,Postnidation Embryo Development, Animal,Pre-implantation Embryo Development,Prenidation Embryo Development, Animal,Development, Embryo,Development, Embryonic,Development, Postnidation Embryo,Embryo Development, Post-implantation,Embryo Development, Postimplantation,Embryo Development, Postnidation,Embryo Development, Pre-implantation,Embryo Development, Preimplantation,Embryonic Developments,Embryonic Programmings,Post implantation Embryo Development,Pre implantation Embryo Development
D053652 Nuclear Transfer Techniques Methods of implanting a CELL NUCLEUS from a donor cell into an enucleated acceptor cell. Nuclear Transplantation,Somatic Cell Nuclear Transfer Technique,Nuclear Transfer Technique,Transplantation, Nuclear

Related Publications

Yuji Goto, and Satoko Matoba, and Kei Imai, and Masaya Geshi
August 1996, Molecular reproduction and development,
Yuji Goto, and Satoko Matoba, and Kei Imai, and Masaya Geshi
January 1995, Hormone research,
Yuji Goto, and Satoko Matoba, and Kei Imai, and Masaya Geshi
November 1997, Molecular reproduction and development,
Yuji Goto, and Satoko Matoba, and Kei Imai, and Masaya Geshi
June 1995, The Japanese journal of veterinary research,
Yuji Goto, and Satoko Matoba, and Kei Imai, and Masaya Geshi
March 1993, Molecular reproduction and development,
Yuji Goto, and Satoko Matoba, and Kei Imai, and Masaya Geshi
January 2023, Methods in molecular biology (Clifton, N.J.),
Yuji Goto, and Satoko Matoba, and Kei Imai, and Masaya Geshi
September 2011, The Journal of reproduction and development,
Yuji Goto, and Satoko Matoba, and Kei Imai, and Masaya Geshi
August 2013, Animal science journal = Nihon chikusan Gakkaiho,
Yuji Goto, and Satoko Matoba, and Kei Imai, and Masaya Geshi
October 1997, Molecular reproduction and development,
Copied contents to your clipboard!