Dopamine receptor homooligomers and heterooligomers in schizophrenia. 2011

Melissa L Perreault, and Brian F O'Dowd, and Susan R George
Centre for Addiction and Mental Health, Toronto, Ontario, Canada.

Over the past two decades the dopamine D2 receptor has been undoubtedly the most widely studied dopamine receptor for the therapeutic treatment of schizophrenia, as the majority of antipsychotics exhibit antagonism at this receptor. However, the cognitive symptoms of the disorder are mostly resistant to the majority of available antipsychotic treatments and, as a result, there is a critical need to develop novel therapies that ameliorate all symptoms. The recognition that dopamine receptors, such as all G protein-coupled receptors (GPCRs), exist as oligomeric complexes has provided new avenues for drug design in the search for novel therapies. Furthermore, that it is now known that dopamine receptors can form heteromers, such as the dopamine D1-D2 receptor heteromer, with pharmacology and function distinct from its constituent receptors, has significantly expanded the range of potential drug targets. The aim of this review is to discuss the therapeutic relevance of these dopamine receptor oligomers to schizophrenia and to address the potential value of dopamine receptor heteromers in the search for new therapeutic strategies.

UI MeSH Term Description Entries
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012559 Schizophrenia A severe emotional disorder of psychotic depth characteristically marked by a retreat from reality with delusion formation, HALLUCINATIONS, emotional disharmony, and regressive behavior. Dementia Praecox,Schizophrenic Disorders,Disorder, Schizophrenic,Disorders, Schizophrenic,Schizophrenias,Schizophrenic Disorder
D014150 Antipsychotic Agents Agents that control agitated psychotic behavior, alleviate acute psychotic states, reduce psychotic symptoms, and exert a quieting effect. They are used in SCHIZOPHRENIA; senile dementia; transient psychosis following surgery; or MYOCARDIAL INFARCTION; etc. These drugs are often referred to as neuroleptics alluding to the tendency to produce neurological side effects, but not all antipsychotics are likely to produce such effects. Many of these drugs may also be effective against nausea, emesis, and pruritus. Antipsychotic,Antipsychotic Agent,Antipsychotic Drug,Antipsychotic Medication,Major Tranquilizer,Neuroleptic,Neuroleptic Agent,Neuroleptic Drug,Neuroleptics,Tranquilizing Agents, Major,Antipsychotic Drugs,Antipsychotic Effect,Antipsychotic Effects,Antipsychotics,Major Tranquilizers,Neuroleptic Agents,Neuroleptic Drugs,Tranquillizing Agents, Major,Agent, Antipsychotic,Agent, Neuroleptic,Drug, Antipsychotic,Drug, Neuroleptic,Effect, Antipsychotic,Major Tranquilizing Agents,Major Tranquillizing Agents,Medication, Antipsychotic,Tranquilizer, Major
D015259 Dopamine Agents Any drugs that are used for their effects on dopamine receptors, on the life cycle of dopamine, or on the survival of dopaminergic neurons. Dopamine Drugs,Dopamine Effect,Dopamine Effects,Dopaminergic Agents,Dopaminergic Drugs,Dopaminergic Effect,Dopaminergic Effects,Agents, Dopamine,Agents, Dopaminergic,Drugs, Dopamine,Drugs, Dopaminergic,Effect, Dopamine,Effect, Dopaminergic,Effects, Dopamine,Effects, Dopaminergic
D017447 Receptors, Dopamine D1 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D1-class receptor genes lack INTRONS, and the receptors stimulate ADENYLYL CYCLASES. Dopamine D1 Receptors,Dopamine-D1 Receptor,D1 Receptors, Dopamine,Dopamine D1 Receptor,Receptor, Dopamine-D1
D017448 Receptors, Dopamine D2 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D2-class receptor genes contain INTRONS, and the receptors inhibit ADENYLYL CYCLASES. Dopamine D2 Receptors,Dopamine-D2 Receptor,D2 Receptors, Dopamine,Dopamine D2 Receptor,Receptor, Dopamine-D2
D046912 Multiprotein Complexes Macromolecular complexes formed from the association of defined protein subunits. Macromolecular Protein Complexes,Complexes, Macromolecular Protein,Complexes, Multiprotein,Protein Complexes, Macromolecular

Related Publications

Melissa L Perreault, and Brian F O'Dowd, and Susan R George
November 2007, TheScientificWorldJournal,
Melissa L Perreault, and Brian F O'Dowd, and Susan R George
September 2005, Molecular pharmacology,
Melissa L Perreault, and Brian F O'Dowd, and Susan R George
April 1987, Lancet (London, England),
Melissa L Perreault, and Brian F O'Dowd, and Susan R George
March 1993, Lancet (London, England),
Melissa L Perreault, and Brian F O'Dowd, and Susan R George
April 1987, Life sciences,
Melissa L Perreault, and Brian F O'Dowd, and Susan R George
July 1978, Lancet (London, England),
Melissa L Perreault, and Brian F O'Dowd, and Susan R George
August 2001, Pharmacogenomics,
Melissa L Perreault, and Brian F O'Dowd, and Susan R George
May 1994, Lancet (London, England),
Melissa L Perreault, and Brian F O'Dowd, and Susan R George
January 1981, Schizophrenia bulletin,
Melissa L Perreault, and Brian F O'Dowd, and Susan R George
August 2006, Expert opinion on therapeutic targets,
Copied contents to your clipboard!