Dopamine enhances a voltage-dependent transient K+ current in the MMQ cell, a clonal pituitary line expressing functional D2 dopamine receptors. 1990

I S Login, and J J Pancrazio, and Y I Kim
Department of Neurology, University of Virginia Health Sciences Center, Charlottesville 22908.

The influence of dopamine on voltage-dependent K+ current (IK) was studied in cultured MMQ cells using the whole-cell patch-clamp technique. IK in nearly all MMQ cells revealed a transient outward current component and inactivated during maintained depolarization lasting 60 ms. The transient component was inhibited by prepulse potentials more positive than -40 mV or by addition of 4 mM 4-aminopyridine to the bathing solution and was insensitive to the external Ca2+ concentration. Thus, this transient K+ current resembled the A-current (IA) found in other cells. Dopamine at 1 microM increased by 50% (P less than 0.001) the peak of IK evoked by a test potential to +80 mV and the response was prevented by pretreatment with 100 nM haloperidol, a D2 receptor antagonist. These data suggest that MMQ clonal pituitary cells possess a voltage-gated K+ A-current and that this current can be modulated by dopamine via D2 receptors.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D015761 4-Aminopyridine One of the POTASSIUM CHANNEL BLOCKERS with secondary effect on calcium currents which is used mainly as a research tool and to characterize channel subtypes. 4-Aminopyridine Sustained Release,Dalfampridine,Fampridine-SR,Pymadine,VMI-103,4 Aminopyridine,4 Aminopyridine Sustained Release,Fampridine SR,Sustained Release, 4-Aminopyridine,VMI 103,VMI103
D017448 Receptors, Dopamine D2 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D2-class receptor genes contain INTRONS, and the receptors inhibit ADENYLYL CYCLASES. Dopamine D2 Receptors,Dopamine-D2 Receptor,D2 Receptors, Dopamine,Dopamine D2 Receptor,Receptor, Dopamine-D2

Related Publications

I S Login, and J J Pancrazio, and Y I Kim
August 1992, European journal of pharmacology,
I S Login, and J J Pancrazio, and Y I Kim
November 1988, Endocrinology,
I S Login, and J J Pancrazio, and Y I Kim
December 2000, American journal of physiology. Cell physiology,
I S Login, and J J Pancrazio, and Y I Kim
June 2001, The Japanese journal of physiology,
I S Login, and J J Pancrazio, and Y I Kim
June 1985, Life sciences,
I S Login, and J J Pancrazio, and Y I Kim
April 1991, Molecular pharmacology,
I S Login, and J J Pancrazio, and Y I Kim
December 1996, The Journal of physiology,
I S Login, and J J Pancrazio, and Y I Kim
December 2001, The Chinese journal of physiology,
Copied contents to your clipboard!