Characterization of the MMQ cell, a prolactin-secreting clonal cell line that is responsive to dopamine. 1988

A M Judd, and I S Login, and K Kovacs, and P C Ross, and B L Spangelo, and W D Jarvis, and R M MacLeod
Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville 22908.

Although dopamine inhibits PRL release from the normal anterior pituitary lactotroph, a conclusive demonstration of the mechanisms involved in this response has been impeded by the presence of other cell types in the anterior pituitary. To circumvent this problem, we have isolated a clonal cell line, designated MMQ, from the 7315a rat pituitary tumor. The MMQ cell is an exemplary model for our use because it only secretes PRL. Our studies show that dopamine inhibits secretagogue-induced PRL release from these cells. In addition, dopamine decreases the intracellular cAMP concentration in MMQ cells that have been exposed to forskolin, cholera toxin, or vasoactive intestinal polypeptide, each a stimulator of cAMP generation. This inhibition is, in turn, reversed by the dopamine antagonist haloperidol and by pertussis toxin, an inactivator of the GTP-binding coupling protein. Dopamine also decreases the uptake and fractional efflux of 45Ca2+ by MMQ cells that have been exposed to the calcium channel activator maitotoxin. It seems, therefore, that dopamine decreases PRL release from MMQ cells at least in part by decreasing intracellular cAMP levels and calcium uptake. In additional experiments, we have found that MMQ cells are responsive to somatostatin, estrogen, progesterone, and acetylcholine, but not to TRH, angiotensin II, neurotensin, or bombesin. Furthermore, these cells possess a functional protein kinase-C system, as evidenced by the increase in PRL release and decrease in stimulated intracellular cAMP levels that occur in response to treatment with phorbol diesters. We suggest that the MMQ cell line will prove a useful model system for study of the biochemical effects of dopamine and other factors that modify PRL release.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008387 Marine Toxins Toxic or poisonous substances elaborated by marine flora or fauna. They include also specific, characterized poisons or toxins for which there is no more specific heading, like those from poisonous FISHES. Marine Biotoxins,Phycotoxins
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D010911 Pituitary Neoplasms Neoplasms which arise from or metastasize to the PITUITARY GLAND. The majority of pituitary neoplasms are adenomas, which are divided into non-secreting and secreting forms. Hormone producing forms are further classified by the type of hormone they secrete. Pituitary adenomas may also be characterized by their staining properties (see ADENOMA, BASOPHIL; ADENOMA, ACIDOPHIL; and ADENOMA, CHROMOPHOBE). Pituitary tumors may compress adjacent structures, including the HYPOTHALAMUS, several CRANIAL NERVES, and the OPTIC CHIASM. Chiasmal compression may result in bitemporal HEMIANOPSIA. Pituitary Cancer,Cancer of Pituitary,Cancer of the Pituitary,Pituitary Adenoma,Pituitary Carcinoma,Pituitary Tumors,Adenoma, Pituitary,Adenomas, Pituitary,Cancer, Pituitary,Cancers, Pituitary,Carcinoma, Pituitary,Carcinomas, Pituitary,Neoplasm, Pituitary,Neoplasms, Pituitary,Pituitary Adenomas,Pituitary Cancers,Pituitary Carcinomas,Pituitary Neoplasm,Pituitary Tumor,Tumor, Pituitary,Tumors, Pituitary
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

A M Judd, and I S Login, and K Kovacs, and P C Ross, and B L Spangelo, and W D Jarvis, and R M MacLeod
November 1973, Experimental cell research,
A M Judd, and I S Login, and K Kovacs, and P C Ross, and B L Spangelo, and W D Jarvis, and R M MacLeod
June 1995, Journal of molecular endocrinology,
A M Judd, and I S Login, and K Kovacs, and P C Ross, and B L Spangelo, and W D Jarvis, and R M MacLeod
January 1979, Nature,
A M Judd, and I S Login, and K Kovacs, and P C Ross, and B L Spangelo, and W D Jarvis, and R M MacLeod
January 1990, Brain research,
A M Judd, and I S Login, and K Kovacs, and P C Ross, and B L Spangelo, and W D Jarvis, and R M MacLeod
October 1998, Endocrinology,
A M Judd, and I S Login, and K Kovacs, and P C Ross, and B L Spangelo, and W D Jarvis, and R M MacLeod
January 1990, Cytotechnology,
A M Judd, and I S Login, and K Kovacs, and P C Ross, and B L Spangelo, and W D Jarvis, and R M MacLeod
November 1991, Molecular and cellular endocrinology,
A M Judd, and I S Login, and K Kovacs, and P C Ross, and B L Spangelo, and W D Jarvis, and R M MacLeod
March 1991, European journal of pharmacology,
A M Judd, and I S Login, and K Kovacs, and P C Ross, and B L Spangelo, and W D Jarvis, and R M MacLeod
November 1985, Cancer research,
A M Judd, and I S Login, and K Kovacs, and P C Ross, and B L Spangelo, and W D Jarvis, and R M MacLeod
November 1986, The Journal of general virology,
Copied contents to your clipboard!