Toxicology and carcinogenesis studies of 2,3',4,4',5-pentachlorobiphenyl (PCB 118) (CAS No. 31508-00-6) in female harlan Sprague-Dawley rats (gavage studies). 2010


Dioxin Toxic Equivalency Factor Evaluation Overview- Polyhalogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) have the ability to bind to and activate the ligand-activated transcription factor, the aryl hydrocarbon receptor (AhR). Structurally related compounds that bind to the AhR and exhibit biological actions similar to TCDD are commonly referred to as "dioxin-like compounds"(DLCs). Ambient human exposure to DLCs occurs through the ingestion of foods containing residues of DLCs that bioconcentrate through the food chain. Due to their lipophilicity and persistence, once internalized they accumulate in adipose tissue resulting in chronic lifetime human exposure. Since human exposure to DLCs always occurs as a complex mixture, the toxic equivalency factor (TEF) methodology has been developed as a mathematical tool to assess the health risk posed by complex mixtures of these compounds. The TEF methodology is a relative potency scheme that ranks the dioxin-like activity of a compound relative to TCDD, which is the most potent congener. This allows for the estimation of the potential dioxin-like activity of a mixture of chemicals, based on a common mechanism of action involving an initial binding of DLCs to the AhR. The toxic equivalency of DLCs was nominated for evaluation because of the widespread human exposure to DLCs and the lack of data on the adequacy of the TEF methodology for predicting relative potency for cancer risk. To address this, the National Toxicology Program conducted a series of 2-year bioassays in female Harlan Sprague-Dawley rats to evaluate the chronic toxicity and carcinogenicity of DLCs and structurally related polychlorinated biphenyls (PCBs) and mixtures of these compounds. Polychlorinated biphenyls (PCBs) and their mixtures including 2,3',4,4',5-pentachlorobiphenyl (PCB 118) were produced commercially before 1977 for the electric industry as dielectric insulating fluids for transformers and capacitors. Manufacture and use of these chemicals were stopped because of increased PCB residues in the environment, but they continue to be released into the environment through the use and disposal of products containing PCBs, as by-products during the manufacture of certain organic chemicals, during combustion of some waste materials, and during atmospheric recycling. This PCB 118 study was conducted as part of the dioxin TEF evaluation that included multiple 2-year rat bioassays to evaluate the relative chronic toxicity and carcinogenicity of DLCs, structurally related PCBs, and mixtures of these compounds. Female Harlan Sprague-Dawley rats were administered PCB 118 (at least 99% pure) in corn oil:acetone (99:1) by gavage for 14, 31, or 53 weeks or 2 years. 2-YEAR STUDY: Groups of 80 female rats were administered 100, 220, 460, 1,000, or 4,600 g PCB 118/kg body weight in corn oil:acetone (99:1) by gavage, 5 days per week, for up to 105 weeks; a group of 80 vehicle control female rats received the corn oil/acetone vehicle alone. Groups of 30 female rats received 10 or 30 g/kg for up to 53 weeks only. Up to 10 rats per group were evaluated at 14, 31, or 53 weeks. A stop-exposure group of 50 female rats was administered 4,600 g/kg PCB 118 in corn oil:acetone (99:1) by gavage for 30 weeks then the vehicle for the remainder of the study. Survival of all dosed groups of rats was similar to that of the vehicle control group. Mean body weights of 1,000 g/kg rats were 7% less than those of the vehicle controls after week 36, and those of the 4,600 g/kg core study and stop-exposure groups were 7% less than those of the vehicle controls after week 7. Following cessation of treatment, the body weight gain in the stop-exposure group was similar to that of the vehicle control group. In general, exposure to PCB 118 lead to dose-dependent decreases in the concentrations of serum total thyroxine (T4) and free T4 in all dosed groups. There were no effects on triiodothyronine or thyroid stimulating hormone levels in any dosed groups evaluated at the 14-, 31-, and 53-week interim evaluations. There were increases in hepatic cell proliferation in the 4,600 g/kg group at 14, 31, and 53 weeks. Administration of PCB 118 led to dose-dependent increases in CYP1A1-associated 7-ethoxyresorufin-O-deethylase, CYP1A2-associated acetanilide4-hydroxylase, and CYP2B-associated pentoxyresorufin-O-deethylase activities at the 14-, 31-, and 53-week interim evaluations. Analysis of PCB 118 concentrations in dosed groups showed dose- and duration of dosing-dependent increases in fat, liver, lung, and blood. The highest concentrations were seen in fat at 2 years with lower concentrations observed in the liver, lung, and blood. At the 53-week interim evaluation, three 4,600 g/kg rats had liver cholangiocarcinoma and one had hepatocellular adenoma. At 2 years, there were significant treatment-related increases in the incidences of cholangiocarcinoma and hepatocellular adenoma. Four incidences of hepatocholangioma occurred in the 4,600 g/kg core study group. At 2 years, a significant dose-related increase in hepatic toxicity was observed and was characterized by increased incidences of numerous lesions including hepatocyte hypertrophy, inflammation, oval cell hyperplasia, pigmentation, multinucleated hepatocyte, eosinophilic and mixed cell foci, diffuse fatty change, toxic hepatopathy, nodular hyperplasia, necrosis, bile duct hyperplasia and cyst, and cholangiofibrosis. The incidences of these lesions were often decreased in the 4,600 g/kg stop-exposure group compared to the 4,600 g/kg core study group. In the lung at 2 years, a significantly increased incidence of cystic keratinizing epithelioma occurred in the 4,600 g/kg core study group compared to the vehicle control group incidence. Incidences of bronchiolar metaplasia of the alveolar epithelium were significantly increased in the groups administered 460 g/kg or greater, and the incidence of squamous metaplasia was significantly increased in the 4,600 g/kg core study group. The incidence of carcinoma of the uterus in the 4,600 g/kg stop-exposure group was significantly greater than those in the vehicle control and 4,600 g/kg core study groups at 2 years. A marginal increase in squamous cell carcinoma occurred in the 220 g/kg group. At 2 years, there were marginally increased incidences of exocrine pancreatic adenoma or carcinoma in the 460, 1,000, and 4,600 g/kg core study groups. Numerous nonneoplastic effects were seen in other organs including: adrenal cortical atrophy and cytoplasmic vacuolization, pancreatic acinar cell cytoplasmic vacuolization and arterial chronic active inflammation, follicular cell hypertrophy of the thyroid gland, inflammation and respiratory epithelial hyperplasia of the nose, and kidney pigmentation. CONCLUSIONS Under the conditions of this 2-year gavage study, there was clear evidence of carcinogenic activity of PCB 118 in female Harlan Sprague-Dawley rats based on increased incidences of neoplasms of the liver (cholangiocarcinoma, hepatocholangioma, and hepatocellular adenoma) and cystic keratinizing epithelioma of the lung. Occurrences of carcinoma in the uterus were considered to be related to the administration of PCB 118. Occurrences of squamous cell carcinoma of the uterus and acinar neoplasms of the pancreas may have been related to administration of PCB 118. Administration of PCB 118 caused increased incidences of nonneoplastic lesions in the liver, lung, adrenal cortex, pancreas, thyroid gland, nose, and kidney. Synonyms: 1,1'-Biphenyl, 2,3',4,4',5-pentachloro-(9CI); 1,1'-biphenyl, 2,3',4,4',5-pentachloro-; 2,3',4,4',5-pentachloro-1,1'-biphenyl; 2,4,5,3',4'-pentachlorobiphenyl; 3,4,2',4',5'-pentachlorobiphenyl; biphenyl, 2,3',4,4',5-pentachloro-; CB 118.

UI MeSH Term Description Entries
D008297 Male Males
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D011078 Polychlorinated Biphenyls Industrial products consisting of a mixture of chlorinated biphenyl congeners and isomers. These compounds are highly lipophilic and tend to accumulate in fat stores of animals. Many of these compounds are considered toxic and potential environmental pollutants. PCBs,Polychlorinated Biphenyl,Polychlorobiphenyl Compounds,Biphenyl, Polychlorinated,Biphenyls, Polychlorinated,Compounds, Polychlorobiphenyl
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072317 Polychlorinated Dibenzodioxins Dibenzodioxin derivatives that contain multiple chloride atoms bound to the benzene ring structures. TCDD,Tetrachlorodibenzodioxin,2,3,7,8-Tetrachlorodibenzo-p-dioxin,Chlorinated Dibenzo-p-dioxins,Dibenzo(b,e)(1,4)dioxin, 2,3,7,8-tetrachloro-,PCDD,Polychlorinated Dibenzo-p-dioxins,Polychlorinated Dibenzodioxin,Polychlorodibenzo-4-dioxin,Polychlorodibenzo-p-dioxin,Tetrachlorodibenzo-p-dioxin,Chlorinated Dibenzo p dioxins,Dibenzo-p-dioxins, Chlorinated,Dibenzo-p-dioxins, Polychlorinated,Dibenzodioxin, Polychlorinated,Dibenzodioxins, Polychlorinated,Polychlorinated Dibenzo p dioxins,Polychlorodibenzo 4 dioxin,Polychlorodibenzo p dioxin,Tetrachlorodibenzo p dioxin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015197 Carcinogenicity Tests Tests to experimentally measure the tumor-producing/cancer cell-producing potency of an agent by administering the agent (e.g., benzanthracenes) and observing the quantity of tumors or the cell transformation developed over a given period of time. The carcinogenicity value is usually measured as milligrams of agent administered per tumor developed. Though this test differs from the DNA-repair and bacterial microsome MUTAGENICITY TESTS, researchers often attempt to correlate the finding of carcinogenicity values and mutagenicity values. Tumorigenicity Tests,Carcinogen Tests,Carcinogenesis Tests,Carcinogenic Activity Tests,Carcinogenic Potency Tests,Carcinogen Test,Carcinogenesis Test,Carcinogenic Activity Test,Carcinogenic Potency Test,Carcinogenicity Test,Potency Test, Carcinogenic,Potency Tests, Carcinogenic,Test, Carcinogen,Test, Carcinogenesis,Test, Carcinogenic Activity,Test, Carcinogenic Potency,Test, Carcinogenicity,Test, Tumorigenicity,Tests, Carcinogen,Tests, Carcinogenesis,Tests, Carcinogenic Activity,Tests, Carcinogenic Potency,Tests, Carcinogenicity,Tests, Tumorigenicity,Tumorigenicity Test
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

January 1997, Fundamental and applied toxicology : official journal of the Society of Toxicology,
Copied contents to your clipboard!