Expression of high molecular weight isoforms of CD45 by mouse thymic progenitor cells. 1990

L K Goff, and L Larsson, and A G Fisher
ICRF Human Tumour Immunology Unit, Courtauld Institute of Biochemistry, London, GB.

We have studied the expression of isoforms of CD45 (leukocyte common antigen, LCA) among T cell precursors using the organ culture system of Jenkinson et al. (Eur. J. Immunol. 1982. 12: 583). These experiments show that cells capable of recolonizing alymphoid embryonic thymic lobes in vitro can be detected in the thymus of fetal and adult mice and are enriched when thymocytes are depleted of cells bearing CD4 or CD8. These data are consistent with results from in vivo experiments of Fowlkes et al. (J. Exp. Med. 1985. 162: 802) indicating that T cell precursors lie within the double-negative (CD4-CD8-) compartment. No precursors were detected among the reciprocal populations of cells bearing CD4 and/or CD8 (single and double positives). Double-negative cell fractions were then divided on the basis of reactivity with monoclonal antibodies RA3-2C2 and RA3-3A1. These antibodies recognize the high molecular weight species of the LCA or, more accurately, a product defined by exon A of the CD45 gene. Recolonizing cells were found predominantly in the CD45RA+ (RA3-2C2 and RA3-3A1 reactive) fraction of double-negative thymocytes; CD45RA- enriched populations had increased efficiency of recolonization and CD45RA- depleted populations had decreased ability to recolonize as compared with the whole CD4-CD8- fraction. To clarify whether progenitors enriched in the CD45RA+ fraction were capable of giving rise to mature CD4+, CD8+ and CD4+ CD8+ cells, we analyzed the progeny of lobes seeded with CD4-CD8-CD45RA+ fractions. After 7-9 days in organ culture the proportion of CD4+, CD8+ or CD4+ CD8+ cells had increased to 35.2%, 18.6% and 23.7%, respectively (mean of five experiments), indicating that progenitors among the CD45RA+ population were indeed multipotent. These results suggest that the majority of T stem cells in the thymus are among thymocytes that express the CD45RA molecule, an hypothesis supported by our finding that removal of CD45RA-expressing cells (using complement and antibody) eliminated recolonizing capacity of thymic cell fractions.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006649 Histocompatibility Antigens A group of antigens that includes both the major and minor histocompatibility antigens. The former are genetically determined by the major histocompatibility complex. They determine tissue type for transplantation and cause allograft rejections. The latter are systems of allelic alloantigens that can cause weak transplant rejection. Transplantation Antigens,Antigens, Transplantation,Histocompatibility Antigen,LD Antigens,SD Antigens,Antigen, Histocompatibility,Antigens, Histocompatibility,Antigens, LD,Antigens, SD
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000943 Antigens, Differentiation Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation. Differentiation Antigen,Differentiation Antigens,Differentiation Antigens, Hairy Cell Leukemia,Differentiation Marker,Differentiation Markers,Leu Antigen,Leu Antigens,Marker Antigen,Marker Antigens,Markers, Differentiation,Antigen, Differentiation,Antigen, Leu,Antigen, Marker,Antigens, Leu,Antigens, Marker,Marker, Differentiation
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D013950 Thymus Gland A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat. Thymus,Gland, Thymus,Glands, Thymus,Thymus Glands

Related Publications

L K Goff, and L Larsson, and A G Fisher
April 1989, European journal of immunology,
L K Goff, and L Larsson, and A G Fisher
October 1992, Journal of immunology (Baltimore, Md. : 1950),
L K Goff, and L Larsson, and A G Fisher
April 1990, Human immunology,
L K Goff, and L Larsson, and A G Fisher
January 1991, International immunology,
L K Goff, and L Larsson, and A G Fisher
February 2011, Molecular and biochemical parasitology,
L K Goff, and L Larsson, and A G Fisher
June 2020, Experimental hematology,
L K Goff, and L Larsson, and A G Fisher
February 1992, Biochemical Society transactions,
L K Goff, and L Larsson, and A G Fisher
June 1979, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!