CD45 expression by B cells. Expression of different CD45 isoforms by subpopulations of activated B cells. 1992

K S Hathcock, and H Hirano, and S Murakami, and R J Hodes
Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

To determine the effect of distinct activation stimuli on CD45 expression by B cells, we have examined the expression of CD45 molecules on murine B cells stimulated with LPS or the Th cell cytokine IL-5. Analysis of CD45 by flow cytometry revealed that unstimulated and stimulated B cells expressed homogeneous amounts of total CD45 but that stimulation with IL-5 resulted in a CD44hi, hyaluronate-adherent subpopulation of activated B cells that expressed a markedly altered pattern of expression of exon-specific CD45R or B220 determinants. The predominant CD45 immunoprecipitated from either unstimulated or LPS-stimulated B cells was of the high molecular mass form (approximately 220 kDa) usually associated with B cells. In contrast, the CD45 proteins immunoprecipitated from the hyaluronate-adherent subpopulation of IL-5-activated B cells were predominantly lower m.w. forms. PCR analysis of amplified CD45 cDNA also showed distinct expression profiles characteristic of each B cell population. The highest molecular size PCR product, corresponding to expression of all three variably expressed CD45 exons (A, B, and C) was prominent in resting B cells and in LPS-activated B cells but was selectively reduced in hyaluronate-adherent IL-5-activated B cells, where lower molecular size PCR products predominated, corresponding to expression of one or two of the variable exons. In contrast, LPS-activated B cells expressed reduced levels of these one- or two-exon forms. In addition, all B cell populations expressed a lower m.w. PCR product corresponding in size to the product expected when exons A, B, and C are spliced out of CD45 mRNA. Thus, analysis of alternative splicing of CD45 mRNA, as well as cell surface expression of CD45 provides a novel parameter for analysis of B cell activation by different stimuli.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005260 Female Females
D006649 Histocompatibility Antigens A group of antigens that includes both the major and minor histocompatibility antigens. The former are genetically determined by the major histocompatibility complex. They determine tissue type for transplantation and cause allograft rejections. The latter are systems of allelic alloantigens that can cause weak transplant rejection. Transplantation Antigens,Antigens, Transplantation,Histocompatibility Antigen,LD Antigens,SD Antigens,Antigen, Histocompatibility,Antigens, Histocompatibility,Antigens, LD,Antigens, SD
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation

Related Publications

K S Hathcock, and H Hirano, and S Murakami, and R J Hodes
January 1991, Leukemia research,
K S Hathcock, and H Hirano, and S Murakami, and R J Hodes
July 1990, The Journal of experimental medicine,
K S Hathcock, and H Hirano, and S Murakami, and R J Hodes
March 1993, Leukemia research,
K S Hathcock, and H Hirano, and S Murakami, and R J Hodes
January 1992, Clinical immunology and immunopathology,
K S Hathcock, and H Hirano, and S Murakami, and R J Hodes
July 1991, International immunology,
K S Hathcock, and H Hirano, and S Murakami, and R J Hodes
February 1992, Biochemical Society transactions,
K S Hathcock, and H Hirano, and S Murakami, and R J Hodes
March 1990, European journal of immunology,
K S Hathcock, and H Hirano, and S Murakami, and R J Hodes
August 1991, European journal of immunology,
K S Hathcock, and H Hirano, and S Murakami, and R J Hodes
February 1992, Biochemical Society transactions,
Copied contents to your clipboard!