Antiviral activity of intranasally applied human leukocyte interferon. 1978

S B Greenberg, and M W Harmon, and P E Johnson, and R B Couch

Previous studies in our laboratory have demonstrated that the development of antiviral activity of human leukocyte interferon (IF) in nasal epithelial cells is time and concentration dependent and that the loss of intranasally applied human leukocyte IF is rapid. The present studies compared the activity of IF applied intranasally either by nasal drops or by a saturated cotton pledget. Adult volunteers had IF applied to an area of nasal mucosa (2 by 2 cm(2)) either by repeated nose drops or by a saturated cotton pledget that was applied to the nasal mucosa and left in place for 1 h. Nasal epithelial cells scraped from the area of application, as well as the control, untreated side of the same volunteers, were challenged with vesicular stomatitis virus. No significant reduction in mean virus yield was found in volunteers who received 80,000 U by nose drops. Significant reduction (P < 0.025) in mean virus yield was found in cells obtained 4 h after 80,000, 50,000, or 20,000 U was applied by cotton pledget or in volunteers pretreated with oral antihistamines prior to receiving 80,000 U by nose drops. These experiments indicate that nasal epithelial cells can be made antiviral in vivo by application of human leukocyte IF. However, practical usefulness of human leukocyte IF for prophylaxis against respiratory viral infections may depend on the method of local application.

UI MeSH Term Description Entries
D007372 Interferons Proteins secreted by vertebrate cells in response to a wide variety of inducers. They confer resistance against many different viruses, inhibit proliferation of normal and malignant cells, impede multiplication of intracellular parasites, enhance macrophage and granulocyte phagocytosis, augment natural killer cell activity, and show several other immunomodulatory functions. Interferon
D009297 Nasal Mucosa The mucous lining of the NASAL CAVITY, including lining of the nostril (vestibule) and the OLFACTORY MUCOSA. Nasal mucosa consists of ciliated cells, GOBLET CELLS, brush cells, small granule cells, basal cells (STEM CELLS) and glands containing both mucous and serous cells. Nasal Epithelium,Schneiderian Membrane,Epithelium, Nasal,Membrane, Schneiderian,Mucosa, Nasal
D009666 Nose A part of the upper respiratory tract. It contains the organ of SMELL. The term includes the external nose, the nasal cavity, and the PARANASAL SINUSES. External Nose,External Noses,Nose, External,Noses,Noses, External
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D012996 Solutions The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed) Solution
D014721 Vesicular stomatitis Indiana virus The type species of VESICULOVIRUS causing a disease symptomatically similar to FOOT-AND-MOUTH DISEASE in cattle, horses, and pigs. It may be transmitted to other species including humans, where it causes influenza-like symptoms. Vesicular stomatitis-Indiana virus

Related Publications

S B Greenberg, and M W Harmon, and P E Johnson, and R B Couch
May 1979, Molecular pharmacology,
S B Greenberg, and M W Harmon, and P E Johnson, and R B Couch
January 1980, Annals of the New York Academy of Sciences,
S B Greenberg, and M W Harmon, and P E Johnson, and R B Couch
January 1977, Archives of virology,
S B Greenberg, and M W Harmon, and P E Johnson, and R B Couch
January 1978, Journal of biological standardization,
S B Greenberg, and M W Harmon, and P E Johnson, and R B Couch
January 1978, Advances in experimental medicine and biology,
S B Greenberg, and M W Harmon, and P E Johnson, and R B Couch
July 1987, The Journal of infectious diseases,
S B Greenberg, and M W Harmon, and P E Johnson, and R B Couch
July 1976, Biulleten' eksperimental'noi biologii i meditsiny,
S B Greenberg, and M W Harmon, and P E Johnson, and R B Couch
April 1983, Biochemical and biophysical research communications,
S B Greenberg, and M W Harmon, and P E Johnson, and R B Couch
January 1977, The Annals of otology, rhinology, and laryngology,
Copied contents to your clipboard!