Chromatographic and protein chemical analysis of the ubiquinol-cytochrome c2 oxidoreductase isolated from Rhodobacter sphaeroides. 1990

D J Purvis, and R Theiler, and R A Niederman
Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08855-1059.

The ubiquinol-cytochrome c2 oxidoreductase (cytochrome bc1 complex) purified from chromatophores of Rhodobacter sphaeroides consists of four polypeptide subunits corresponding to cytochrome b, c1, and the Rieske iron-sulfur protein, as well as a 14-kDa polypeptide of unknown function, respectively. In contrast, the complex isolated from Rhodospirillum rubrum by the same procedure lacked a polypeptide corresponding to the 14-kDa subunit. Gel-permeation chromatography of the R. sphaeroides cytochrome bc1 complex in the presence of 200 mM NaCl removed the iron-sulfur protein, while the 14-kDa polypeptide remained tightly bound to the cytochromes; this is consistent with the possibility that the latter protein is an authentic component of the complex rather than an artifact of the isolation procedure. The individual polypeptides of the R. sphaeroides complex were purified to homogeneity by gel-permeation chromatography in the presence of 50% aqueous formic acid and their amino acid compositions determined. The 14-kDa polypeptide was found to be rich in charged and polar residues. Edman degradation analysis indicated that its N terminus is blocked and not rendered accessible by de-blocking procedures. Cyanogen bromide cleavage gave rise to a blocked N-terminal fragment as well as a C-terminal peptide comprising more than one-third of the protein. Gas-phase sequence analysis of this peptide established a sequence of 48 residues and identified a putative trans-membrane segment near the C terminus. The blocked N-terminal fragment was cleaved at tryptophan with BNPS-skatole. The resulting peptides, together with tryptic fragments derived from the intact protein, yielded additional sequence information; however, none of the sequences exhibited significant homologies to any known proteins. Tryptic fragments were also used to generate sequence information for cytochrome c1.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D012242 Rhodobacter sphaeroides Spherical phototrophic bacteria found in mud and stagnant water exposed to light. Rhodopseudomonas sphaeroides,Rhodobacter spheroides,Rhodopseudomonas spheroides
D014450 Electron Transport Complex III A multisubunit enzyme complex that contains CYTOCHROME B GROUP; CYTOCHROME C1; and iron-sulfur centers. It catalyzes the oxidation of ubiquinol to UBIQUINONE, and transfers the electrons to CYTOCHROME C. In MITOCHONDRIA the redox reaction is coupled to the transport of PROTONS across the inner mitochondrial membrane. Complex III,Cytochrome bc1 Complex,Ubiquinol-Cytochrome-c Reductase,Coenzyme Q-Cytochrome-c Reductase,Coenzyme QH2-Cytochrome-c Reductase,Core I Protein, UCCreductase,Core I Protein, Ubiquinol-Cytochrome c Reductase,Core II Protein, UCCreductase,Core II Protein, Ubiquinol-Cytochrome c Reductase,Cytochrome b-c2 Oxidoreductase,Cytochrome bc1,Dihydroubiquinone-Cytochrome-c Reductase,QH(2)-Cytochrome-c Reductase,QH(2)-Ferricytochrome-c Oxidoreductase,Ubihydroquinone-Cytochrome-c Reductase,Ubiquinol-Cytochrome c Reductase,Ubiquinone-Cytochrome b-c2 Oxidoreductase,Coenzyme Q Cytochrome c Reductase,Coenzyme QH2 Cytochrome c Reductase,Core I Protein, Ubiquinol Cytochrome c Reductase,Core II Protein, Ubiquinol Cytochrome c Reductase,Cytochrome b c2 Oxidoreductase,Dihydroubiquinone Cytochrome c Reductase,Reductase, Ubiquinol-Cytochrome c,Ubihydroquinone Cytochrome c Reductase,Ubiquinol Cytochrome c Reductase,Ubiquinone Cytochrome b c2 Oxidoreductase

Related Publications

D J Purvis, and R Theiler, and R A Niederman
August 1982, European journal of biochemistry,
D J Purvis, and R Theiler, and R A Niederman
November 1988, Journal of molecular biology,
D J Purvis, and R Theiler, and R A Niederman
January 1989, Journal of bacteriology,
Copied contents to your clipboard!