Reconstitution of the partially purified membrane component of the superoxide-generating NADPH oxidase of pig neutrophils with phospholipid. 1990

M Nozaki, and K Takeshige, and H Sumimoto, and S Minakami
Department of Biochemistry, Kyushu University School of Medicine, Fukuoka, Japan.

The NADPH-dependent superoxide-generating oxidase of pig neutrophils is activated by sodium dodecyl sulfate in a cell-free system. The activation requires both membrane and cytosolic components. The membrane component was effectively extracted with 0.75% octyl glucoside and the extract was fractionated by wheat-germ-agglutinin-agarose column chromatography. The chromatography resulted in loss of the O2--generating activity in the cell-free system. The activity, however, was restored by the reconstitution with the fraction which passed through the column (fraction A) and the one eluted with N-acetylglucosamine (fraction B) using an octyl glucose dilution procedure: both fractions were pre-mixed in the presence of 0.75% octyl glucoside and diluted by putting the mixture into the detergent-free assay mixture. The latter fraction was copurified with cytochrome b558, the content of which is 2.12 +/- 0.53 nmol/mg protein (mean +/- SD, n = 5). The potency of fraction B in the reconstitution of the O2--generating activity was lost by heat treatment and decreased by protease treatment, whereas that of fraction A was not affected. Fraction A in the reconstitution of the O2--generating activity was replaced by lipid extracted from fraction A, furthermore, by exogenous phospholipid, azolectin. The O2--generating activity reconstituted with azolectin and the partially purified component in fraction B was dependent on SDS, cytosol and the concentrations of azolectin and FAD. The activity was sensitive to p-chloromercuribenzoate but not to azide. The maximal activity was obtained at pH 7.0-7.5. The Km values for NADPH and NADH were 0.024 mM and 0.57 mM, respectively. These properties were consistent with those of the NADPH oxidase responsible for the respiratory burst. The activity in the reconstitution system was 20.5 +/- 3.5 mumol O2-.min-1.mg-1 membrane-derived protein (mean +/- SD, n = 5) which shows that the membrane component was purified about 100-fold. These findings indicate that cytochrome b558 is probably a membrane component of the O2--generating NADPH oxidase and its activation in the cell-free system requires the reconstitution with phospholipids.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009245 NADH Dehydrogenase A flavoprotein and iron sulfur-containing oxidoreductase that catalyzes the oxidation of NADH to NAD. In eukaryotes the enzyme can be found as a component of mitochondrial electron transport complex I. Under experimental conditions the enzyme can use CYTOCHROME C GROUP as the reducing cofactor. The enzyme was formerly listed as EC 1.6.2.1. NADH Cytochrome c Reductase,Diaphorase (NADH Dehydrogenase),NADH (Acceptor) Oxidoreductase,NADH Cytochrome c Oxidoreductase,Dehydrogenase, NADH
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002847 Chromatography, Agarose A method of gel filtration chromatography using agarose, the non-ionic component of agar, for the separation of compounds with molecular weights up to several million. Chromatography, Sepharose,Agarose Chromatography,Sepharose Chromatography,Agarose Chromatographies,Chromatographies, Agarose,Chromatographies, Sepharose,Sepharose Chromatographies
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005182 Flavin-Adenine Dinucleotide A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) FAD,Flavitan,Dinucleotide, Flavin-Adenine,Flavin Adenine Dinucleotide

Related Publications

M Nozaki, and K Takeshige, and H Sumimoto, and S Minakami
November 1984, The Biochemical journal,
M Nozaki, and K Takeshige, and H Sumimoto, and S Minakami
April 1986, The Journal of biological chemistry,
M Nozaki, and K Takeshige, and H Sumimoto, and S Minakami
February 2000, Biochemical and biophysical research communications,
M Nozaki, and K Takeshige, and H Sumimoto, and S Minakami
September 1987, The Biochemical journal,
M Nozaki, and K Takeshige, and H Sumimoto, and S Minakami
December 1991, The Journal of biological chemistry,
M Nozaki, and K Takeshige, and H Sumimoto, and S Minakami
October 2004, The Journal of biological chemistry,
M Nozaki, and K Takeshige, and H Sumimoto, and S Minakami
January 2012, Journal of clinical biochemistry and nutrition,
Copied contents to your clipboard!