The replication of viral and cellular DNA in human herpesvirus 6-infected cells. 1990

D Di Luca, and G Katsafanas, and E C Schirmer, and N Balachandran, and N Frenkel
Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland 20852.

Human herpesvirus 6 (HHV-6) is a newly identified lymphotropic herpesvirus. We have analyzed viral and host DNA replication in peripheral blood lymphocytes infected in the absence of drugs or infected in the presence of phosphonoacetic acid (PAA) or acyclovir (ACV). The results revealed the following: (i) Infection with HHV-6 resulted in the shutoff of host DNA replication. (ii) PAA at concentrations of 100 and 300 micrograms/ml significantly reduced virus replication. The drug inhibited viral DNA replication, whereas host cell DNA replication was not affected. This strongly suggests that HHV-6 encodes a PAA sensitive viral DNA polymerase. (iii) ACV at 20 microM did not interfere with virus production and virus spread. ACV at 100 microM only partly interfered with virus replication, whereas at 400 microM the block was more complete. Viral DNA replication was not affected by ACV at 20 microM. However, approximately 60 and 85% inhibition in viral DNA replication was observed in the presence of 100 and 400 microM of ACV. (iv) Assays for viral thymidine kinase (TK) revealed no significant increase in TK activity, whereas increased TK activity was noted following infection of the same peripheral blood lymphocytes with herpes simplex virus. Thus, either HHV-6 does not encode a tk enzyme which can phosphorylate ACV or the inefficient block may reflect lower sensitivity of the HHV-6 DNA polymerase to the drug.

UI MeSH Term Description Entries
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010746 Phosphonoacetic Acid A simple organophosphorus compound that inhibits DNA polymerase, especially in viruses and is used as an antiviral agent. Phosphonoacetate,Disodium Phosphonoacetate,Fosfonet Sodium,Phosphonacetic Acid,Phosphonoacetate, Disodium
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

D Di Luca, and G Katsafanas, and E C Schirmer, and N Balachandran, and N Frenkel
April 2007, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology,
D Di Luca, and G Katsafanas, and E C Schirmer, and N Balachandran, and N Frenkel
May 1984, Journal of virology,
D Di Luca, and G Katsafanas, and E C Schirmer, and N Balachandran, and N Frenkel
February 1967, Journal of virology,
D Di Luca, and G Katsafanas, and E C Schirmer, and N Balachandran, and N Frenkel
March 2018, Journal of virology,
D Di Luca, and G Katsafanas, and E C Schirmer, and N Balachandran, and N Frenkel
April 1981, Virology,
D Di Luca, and G Katsafanas, and E C Schirmer, and N Balachandran, and N Frenkel
July 1992, The Journal of infectious diseases,
D Di Luca, and G Katsafanas, and E C Schirmer, and N Balachandran, and N Frenkel
November 1979, The Journal of general virology,
D Di Luca, and G Katsafanas, and E C Schirmer, and N Balachandran, and N Frenkel
January 1971, Pathobiology annual,
D Di Luca, and G Katsafanas, and E C Schirmer, and N Balachandran, and N Frenkel
January 1987, Archives of virology,
D Di Luca, and G Katsafanas, and E C Schirmer, and N Balachandran, and N Frenkel
January 1998, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!