In vivo visualization of the growth of pre- and postsynaptic elements of neuromuscular junctions in the mouse. 1990

R J Balice-Gordon, and J W Lichtman
Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110.

In order to study how neuromuscular junctions grow, we have repeatedly viewed the same junctions in mouse sternomastoid muscles at monthly intervals from 2 weeks to 18 months of age. Motor nerve terminals were stained with the nontoxic fluorescent dye 4-Di-2-ASP (Magrassi et al., 1987), and postsynaptic ACh receptors were labeled with fluorescently tagged alpha-bungarotoxin. Neuromuscular junctions grew primarily by expansion of existing motor nerve terminal and postsynaptic receptor regions without the addition or loss of synaptic areas. The expansion of pre- and postsynaptic specializations was precisely matched, suggesting that as neuromuscular junctions grow, the opposing specializations enlarge simultaneously. Each neuromuscular junction grew in length and width at the same rate that muscle fibers enlarged in those 2 dimensions, suggesting that junctional growth might be a mechanical consequence of muscle fiber growth. Repeated visualization of ACh receptors over time showed that previously labeled receptors spread apart in the membrane occupying a progressively larger area as muscle fibers grew. At the same time, new receptors were intercalated throughout the enlarged postsynaptic area. Thus, the growth of postsynaptic regions appears to be directly related to the expansion of the muscle fiber membrane as muscle fibers grow. The maintained alignment between growing motor nerve terminals and postsynaptic regions suggests that nerve terminal growth may be a consequence of its adhesion to growing postsynaptic specializations. This conclusion is supported by the coextensive stretching of motor nerve terminals and postsynaptic regions when muscle fibers are stretched. Thus, the growth of motor nerve terminals is coupled to the growth of postsynaptic regions, and the growth of the postsynaptic regions is in turn coupled to the growth of muscle fibers. In this way, the branching pattern of neuromuscular junctions may be stably maintained despite ongoing enlargement of synaptic area.

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D017981 Receptors, Neurotransmitter Cell surface receptors that bind signalling molecules released by neurons and convert these signals into intracellular changes influencing the behavior of cells. Neurotransmitter is used here in its most general sense, including not only messengers that act to regulate ion channels, but also those which act on second messenger systems and those which may act at a distance from their release sites. Included are receptors for neuromodulators, neuroregulators, neuromediators, and neurohumors, whether or not located at synapses. Neurohumor Receptors,Neuromediator Receptors,Neuromodulator Receptors,Neuroregulator Receptors,Receptors, Neurohumor,Receptors, Synaptic,Synaptic Receptor,Synaptic Receptors,Neuromediator Receptor,Neuromodulator Receptor,Neuroregulator Receptor,Neurotransmitter Receptor,Receptors, Neuromediators,Receptors, Neuromodulators,Receptors, Neuroregulators,Receptors, Neurotransmitters,Neuromediators Receptors,Neuromodulators Receptors,Neuroregulators Receptors,Neurotransmitter Receptors,Neurotransmitters Receptors,Receptor, Neuromediator,Receptor, Neuromodulator,Receptor, Neuroregulator,Receptor, Neurotransmitter,Receptor, Synaptic,Receptors, Neuromediator,Receptors, Neuromodulator,Receptors, Neuroregulator

Related Publications

R J Balice-Gordon, and J W Lichtman
June 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R J Balice-Gordon, and J W Lichtman
January 1966, The Journal of general physiology,
R J Balice-Gordon, and J W Lichtman
June 1980, Journal of neurocytology,
R J Balice-Gordon, and J W Lichtman
May 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R J Balice-Gordon, and J W Lichtman
January 2002, Neuroscience and behavioral physiology,
R J Balice-Gordon, and J W Lichtman
January 1988, Zhurnal evoliutsionnoi biokhimii i fiziologii,
R J Balice-Gordon, and J W Lichtman
November 2015, The Journal of comparative neurology,
Copied contents to your clipboard!