Repeated in vivo visualization of neuromuscular junctions in adult mouse lateral gastrocnemius. 1990

D J Wigston
Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322.

The structure of individually identified neuromuscular junctions (NMJs) in mouse lateral gastrocnemius (LG) muscles was studied on 2 or more occasions over 3-6 months. Presynaptic motor nerve terminals and their underlying acetylcholine receptors were stained in living animals with the fluorescent dye 4-(4-diethylaminostyryl)-N-methylpyridinium iodide) and tetramethylrhodamine isothiocyanate-conjugated alpha-bungarotoxin (R alpha BTX), respectively, and visualized by video-enhanced fluorescence microscopy. The overall shape of most NMJs changed very little over this time except for enlargement of some junctions attributable to growth of the animals. A few junctions did, however, change appreciably: over 3-6 months about 15% underwent modifications such as additions to, or losses from, their original configuration. The frequency and extent of changes in LG NMJs were substantially less than in a similar study of NMJs from mouse soleus (Wigston, 1989). These findings, together with those from other laboratories, indicate a correlation between the extent of NMJ remodeling and the fiber-type composition of a muscle: NMJs in muscles consisting of predominantly fast-twitch myofibers appear to undergo less remodeling than NMJs in muscles containing a substantial fraction of slow-twitch fibers. Since fast- and slow-twitch muscles and their motoneurons exhibit strikingly different patterns of electrical activity, these findings suggest that structural remodeling at mammalian NMJs may depend on the amount of impulse activity experienced by motoneurons, their target muscle, or individual synaptic terminals.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011726 Pyridinium Compounds Derivatives of PYRIDINE containing a cation C5H5NH or radical C5H6N. Compounds, Pyridinium
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D005260 Female Females
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs

Related Publications

D J Wigston
March 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D J Wigston
May 1984, Journal of the neurological sciences,
D J Wigston
March 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!