Phosphorylation of smooth muscle myosin light chain kinase by Ca2+/calmodulin-dependent protein kinase II: comparative study of the phosphorylation sites. 1990

Y Hashimoto, and T R Soderling
Howard Hughes Medical Institute, Vanderbilt University Medical School, Nashville, Tennessee 37232-0615.

Smooth muscle myosin light chain kinase (MLC-kinase) was rapidly phosphorylated in vitro by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) to a molar stoichiometry of 2.77 +/- 0.15 associated with a threefold increase in the concentration of calmodulin (CaM) required for half-maximal activation of MLC-kinase. Binding of CaM to MLC-kinase markedly reduced the phosphorylation stoichiometry to 0.21 +/- 0.05 and almost completely inhibited phosphorylation of sites in two peptides (32P-peptides P1 and P2) with reduced phosphorylation of peptide P3. By analogy, cAMP-dependent protein kinase phosphorylated MLC-kinase to a stoichiometry of 3.0 or greater in the absence of CaM with about a threefold decrease in the apparent affinity of MLC-kinase for CaM. Binding of CaM to MLC-kinase inhibited the phosphorylation to 0.84 +/- 0.13. Complete tryptic digests contained two major 32P-peptides as reported previously. One of the peptides, whose phosphorylation was inhibited in the presence of excess calmodulin, appeared to be the same as P2. Automated Edman sequence analysis suggested that both CaM-kinase II and cAMP-dependent protein kinase phosphorylated this peptide at the second of the two adjacent serine residues located at the C-terminal boundary of the CaM-binding domain. However, the other peptide phosphorylated by cAMP-dependent protein kinase, regardless of whether CaM was bound, was different from P1 and P3. Thus, MLC-kinase has a regulatory phosphorylation site(s) that is phosphorylated by the autophosphorylated form of CaM-kinase II and is blocked by Ca2+/CaM-binding.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009219 Myosin-Light-Chain Kinase An enzyme that phosphorylates myosin light chains in the presence of ATP to yield myosin-light chain phosphate and ADP, and requires calcium and CALMODULIN. The 20-kDa light chain is phosphorylated more rapidly than any other acceptor, but light chains from other myosins and myosin itself can act as acceptors. The enzyme plays a central role in the regulation of smooth muscle contraction. Myosin Kinase,Myosin LCK,Myosin Regulatory Light-Chain Kinase,Kinase, Myosin,Kinase, Myosin-Light-Chain,LCK, Myosin,Myosin Light Chain Kinase,Myosin Regulatory Light Chain Kinase
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D010748 Phosphopeptides PEPTIDES that incorporate a phosphate group via PHOSPHORYLATION. Phosphopeptide
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent

Related Publications

Y Hashimoto, and T R Soderling
September 1990, Molecular and cellular biochemistry,
Y Hashimoto, and T R Soderling
April 1985, The Journal of biological chemistry,
Y Hashimoto, and T R Soderling
January 1988, Advances in second messenger and phosphoprotein research,
Y Hashimoto, and T R Soderling
June 1987, Biochemical and biophysical research communications,
Y Hashimoto, and T R Soderling
January 2001, Journal of muscle research and cell motility,
Copied contents to your clipboard!