Phosphorylation of smooth muscle myosin by type II Ca2+/calmodulin-dependent protein kinase. 1990

A M Edelman, and W H Lin, and D J Osterhout, and M K Bennett, and M B Kennedy, and E G Krebs
Department of Pharmacology and Therapeutics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo 14214.

Brain type II Ca2+/calmodulin-dependent protein kinase was found to phosphorylate smooth muscle myosin, incorporating maximally approximately 2 mol of phosphoryl per mol of myosin, exclusively on the 20,000 dalton light chain subunit. After maximal phosphorylation of myosin or the isolated 20,000 dalton light chain subunit by myosin light chain kinase, the addition of type II Ca2+/calmodulin-dependent protein kinase led to no further incorporation indicating the two kinases phosphorylated a common site. This conclusion was supported by two dimensional mapping of tryptic digests of myosin phosphorylated by the two kinases. By phosphoamino acid analysis the phosphorylated residue was identified as a serine. The phosphorylation by type II Ca2+/calmodulin-dependent protein kinase of myosin resulted in enhancement of its actin-activated Mg2(+)-ATPase activity. Taken together, these data strongly support the conclusion that type II Ca2+/calmodulin-dependent protein kinase phosphorylates the same amino acid residue on the 20,000 dalton light chain subunit of smooth muscle myosin as is phosphorylated by myosin light chain kinase and suggest an alternative mechanism for the regulation of actin-myosin interaction.

UI MeSH Term Description Entries
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D010759 Phosphorus Isotopes Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope. Isotopes, Phosphorus
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

A M Edelman, and W H Lin, and D J Osterhout, and M K Bennett, and M B Kennedy, and E G Krebs
June 1990, The Journal of biological chemistry,
A M Edelman, and W H Lin, and D J Osterhout, and M K Bennett, and M B Kennedy, and E G Krebs
April 1990, Archives of biochemistry and biophysics,
A M Edelman, and W H Lin, and D J Osterhout, and M K Bennett, and M B Kennedy, and E G Krebs
January 1994, Biochemical and biophysical research communications,
A M Edelman, and W H Lin, and D J Osterhout, and M K Bennett, and M B Kennedy, and E G Krebs
June 1992, The Journal of biological chemistry,
A M Edelman, and W H Lin, and D J Osterhout, and M K Bennett, and M B Kennedy, and E G Krebs
January 2017, Advances in pharmacology (San Diego, Calif.),
A M Edelman, and W H Lin, and D J Osterhout, and M K Bennett, and M B Kennedy, and E G Krebs
August 1999, FEBS letters,
A M Edelman, and W H Lin, and D J Osterhout, and M K Bennett, and M B Kennedy, and E G Krebs
September 1995, The Biochemical journal,
A M Edelman, and W H Lin, and D J Osterhout, and M K Bennett, and M B Kennedy, and E G Krebs
April 1985, The Journal of biological chemistry,
A M Edelman, and W H Lin, and D J Osterhout, and M K Bennett, and M B Kennedy, and E G Krebs
April 1994, The Biochemical journal,
A M Edelman, and W H Lin, and D J Osterhout, and M K Bennett, and M B Kennedy, and E G Krebs
May 1995, Biochemistry,
Copied contents to your clipboard!