Involvement of the noradrenergic system in the seizures of epileptic El mice. 1990

H Tsuda, and M Ito, and K Oguro, and K Mutoh, and H Shiraishi, and Y Shirasaka, and H Mikawa
Department of Pediatrics, Faculty of Medicine, Kyoto University, Japan.

We studied the role of the noradrenergic system in the seizures of epileptic El mice. To this end, the anticonvulsant activity of adrenergic drugs was tested with a scoring method, and the binding of [3H]dihydroalprenolol, [3H]prazosin and [3H]yohimbine was evaluated in whole brains and various brain regions from stimulated and unstimulated El mice, and their maternal ddy mice. The seizures of El mice were inhibited by noradrenaline, phenylephrine, oxymetazoline, clonidine and yohimbine in a dose-dependent manner. These preventive effects of alpha-adrenoceptor agonists were antagonized by pretreatment with alpha-adrenoceptor antagonists. The preventive effect of yohimbine was reversed by pretreatment with clonidine or alpha-methyl-p-tyrosine, although the latter drug did not affect the anticonvulsant effect of clonidine. The binding of [3H]dihydroalprenolol was the same in the three groups of mice. More [3H]prazosin was bound in the cerebellum and striatum, and there were more [3H]yohimbine binding sites in the whole brain, cerebral cortex, hippocampus and brainstem of stimulated and unstimulated El mice than in the same areas of ddy mice. These findings suggest that up-regulated alpha 1- and alpha 2-adrenoceptors are involved in the inhibition of the seizures of El mice.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D004082 Dihydroalprenolol Hydrogenated alprenolol derivative where the extra hydrogens are often tritiated. This radiolabeled form of ALPRENOLOL, a beta-adrenergic blocker, is used to label the beta-adrenergic receptor for isolation and study. 1-((Methylethyl)amino)-3-(2-propylphenoxy)-2-propanol
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug

Related Publications

H Tsuda, and M Ito, and K Oguro, and K Mutoh, and H Shiraishi, and Y Shirasaka, and H Mikawa
December 2004, Brain research. Molecular brain research,
H Tsuda, and M Ito, and K Oguro, and K Mutoh, and H Shiraishi, and Y Shirasaka, and H Mikawa
April 1996, Brain research,
H Tsuda, and M Ito, and K Oguro, and K Mutoh, and H Shiraishi, and Y Shirasaka, and H Mikawa
January 2014, Neural plasticity,
H Tsuda, and M Ito, and K Oguro, and K Mutoh, and H Shiraishi, and Y Shirasaka, and H Mikawa
May 1983, Brain research,
H Tsuda, and M Ito, and K Oguro, and K Mutoh, and H Shiraishi, and Y Shirasaka, and H Mikawa
September 2006, Journal of UOEH,
H Tsuda, and M Ito, and K Oguro, and K Mutoh, and H Shiraishi, and Y Shirasaka, and H Mikawa
March 1988, Experimental neurology,
H Tsuda, and M Ito, and K Oguro, and K Mutoh, and H Shiraishi, and Y Shirasaka, and H Mikawa
January 2002, Journal of neurocytology,
H Tsuda, and M Ito, and K Oguro, and K Mutoh, and H Shiraishi, and Y Shirasaka, and H Mikawa
October 1997, Neurochemistry international,
H Tsuda, and M Ito, and K Oguro, and K Mutoh, and H Shiraishi, and Y Shirasaka, and H Mikawa
November 2016, Journal of neurology,
H Tsuda, and M Ito, and K Oguro, and K Mutoh, and H Shiraishi, and Y Shirasaka, and H Mikawa
April 2020, Nature reviews. Drug discovery,
Copied contents to your clipboard!