Role of Asp187 and Gln190 in the Na+/proline symporter (PutP) of Escherichia coli. 2011

Anowarul Amin, and Tadashi Ando, and Shinya Saijo, and Ichiro Yamato
Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.

Asp187 and Gln190 were predicted as conserved and closely located at the Na(+) binding site in a topology and homology model structure of Na(+)/proline symporter (PutP) of Escherichia coli. The replacement of Asp187 with Ala or Leu did not affect proline transport activity; whereas, change to Gln abolished the active transport. The binding affinity for Na(+) or proline of these mutants was similar to that of wild-type (WT) PutP. This result indicates Asp187 to be responsible for active transport of proline without affecting the binding. Replacement of Gln190 with Ala, Asn, Asp, Leu and Glu had no effect on transport or binding, suggesting that it may not have a role in the transport. However, in the negative D187Q mutant, a second mutation, of Gln190 to Glu or Leu, restored 46 or 7% of the transport activity of WT, respectively, while mutation to Ala, Asn or Asp had no effect. Thus, side chain at position 190 has a crucial role in suppressing the functional defect of the D187Q mutant. We conclude that Asp187 is responsible for transport activity instead of coupling-ion binding by constituting the translocation pathway of the ion and Gln190 provides a suppressing mutation site to regain PutP functional activity.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D018698 Glutamic Acid A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. Aluminum L-Glutamate,Glutamate,Potassium Glutamate,D-Glutamate,Glutamic Acid, (D)-Isomer,L-Glutamate,L-Glutamic Acid,Aluminum L Glutamate,D Glutamate,Glutamate, Potassium,L Glutamate,L Glutamic Acid,L-Glutamate, Aluminum
D026921 Amino Acid Transport Systems, Neutral Amino acid transporter systems capable of transporting neutral amino acids (AMINO ACIDS, NEUTRAL). Neutral Amino Acid Transport Systems,Neutral Amino Acid Transporters,Zwitterionic Amino Acid Transport Systems,Na+-Independent Neutral Amino Acid Transporter,Neutral Amino Acid Transport Proteins,Sodium Dependent Neutral Amino Acid Transport Proteins,Sodium Dependent Neutral Amino Acid Transporters,Sodium Independent Neutral Amino Acid Transport Proteins,Sodium Independent Neutral Amino Acid Transporters,Zwitterionic Amino Acid Transport Proteins,Zwitterionic Amino Acid Transporters,Na+ Independent Neutral Amino Acid Transporter
D027981 Symporters Membrane transporters that co-transport two or more dissimilar molecules in the same direction across a membrane. Usually the transport of one ion or molecule is against its electrochemical gradient and is "powered" by the movement of another ion or molecule with its electrochemical gradient. Co-Transporter,Co-Transporters,Symporter,Co Transporter,Co Transporters
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins

Related Publications

Anowarul Amin, and Tadashi Ando, and Shinya Saijo, and Ichiro Yamato
January 1990, Research in microbiology,
Anowarul Amin, and Tadashi Ando, and Shinya Saijo, and Ichiro Yamato
February 2011, Journal of molecular biology,
Anowarul Amin, and Tadashi Ando, and Shinya Saijo, and Ichiro Yamato
January 2009, Biophysical journal,
Anowarul Amin, and Tadashi Ando, and Shinya Saijo, and Ichiro Yamato
January 2012, Frontiers in bioscience (Landmark edition),
Anowarul Amin, and Tadashi Ando, and Shinya Saijo, and Ichiro Yamato
June 1987, Molecular & general genetics : MGG,
Anowarul Amin, and Tadashi Ando, and Shinya Saijo, and Ichiro Yamato
February 2008, The Journal of biological chemistry,
Anowarul Amin, and Tadashi Ando, and Shinya Saijo, and Ichiro Yamato
March 2002, The Journal of biological chemistry,
Anowarul Amin, and Tadashi Ando, and Shinya Saijo, and Ichiro Yamato
January 1986, Molecular & general genetics : MGG,
Anowarul Amin, and Tadashi Ando, and Shinya Saijo, and Ichiro Yamato
December 2016, The Journal of biological chemistry,
Copied contents to your clipboard!