Conformational changes in cytochrome c and cytochrome oxidase upon complex formation: a resonance Raman study. 1990

P Hildebrandt, and T Heimburg, and D Marsh, and G L Powell
Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie, Göttingen, FRG.

The fully oxidized complex of cytochrome c and cytochrome oxidase formed at low ionic strength was studied by resonance Raman spectroscopy. The spectra of the complex and of the individual components were compared over a wide frequency range using Soret band excitation. In both partners of the complex, structural changes occur in the heme groups and in their immediate protein environment. The spectra of the complex in the 1600-1700 cm-1 frequency range were dominated by bands from the cytochrome oxidase component, whereas those in the 300-500 cm-1 range were dominated by bands from the cytochrome c component, hence allowing separation of the contributions from the two individual species. For cytochrome c, spectral changes were observed which correspond to the induction of the conformational state I and the six-coordinated low-spin configuration of state II on binding to cytochrome oxidase. While in state I the structure of cytochrome c is essentially the same as in solution, state II is characterized by a structural rearrangement of the heme pocket, leading to a weakening of the axial iron-methionine bond and an opening of the heme crevice which is situated in the center of the binding domain for cytochrome oxidase. The relative contributions of the two cytochrome c states were estimated to be approximately in the ratio 1:1 in the complex.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013059 Spectrum Analysis, Raman Analysis of the intensity of Raman scattering of monochromatic light as a function of frequency of the scattered light. Raman Spectroscopy,Analysis, Raman Spectrum,Raman Optical Activity Spectroscopy,Raman Scattering,Raman Spectrum Analysis,Scattering, Raman,Spectroscopy, Raman

Related Publications

P Hildebrandt, and T Heimburg, and D Marsh, and G L Powell
July 2000, Biochimica et biophysica acta,
P Hildebrandt, and T Heimburg, and D Marsh, and G L Powell
October 1993, Biochemistry,
P Hildebrandt, and T Heimburg, and D Marsh, and G L Powell
July 2015, The journal of physical chemistry. B,
P Hildebrandt, and T Heimburg, and D Marsh, and G L Powell
January 1972, Cold Spring Harbor symposia on quantitative biology,
P Hildebrandt, and T Heimburg, and D Marsh, and G L Powell
June 1996, FEBS letters,
P Hildebrandt, and T Heimburg, and D Marsh, and G L Powell
April 2012, Biochimica et biophysica acta,
P Hildebrandt, and T Heimburg, and D Marsh, and G L Powell
August 1985, Biochemistry,
P Hildebrandt, and T Heimburg, and D Marsh, and G L Powell
October 1987, The Biochemical journal,
P Hildebrandt, and T Heimburg, and D Marsh, and G L Powell
July 1989, Biochemistry,
Copied contents to your clipboard!