Ultraviolet resonance Raman spectra of cytochrome c conformational states. 1985

R A Copeland, and T G Spiro

Ultraviolet resonance Raman (UV RR) spectra are reported for ferricytochrome c from tuna and horse heart at pH 1.6, 7, 10, and 13, representing distinct conformational states of the protein (states II, III, IV, and V, respectively). The spectra were obtained with pulsed laser excitation at 200 and 218 nm, via H2 Raman shifting the fourth harmonic output of a pulsed YAG laser. At these deep UV wavelengths, strong enhancement is observed for vibrational modes associated with tryptophan, tyrosine, and phenylalanine side chains and with the amide groups of the polypeptide backbone. The amide I peak frequency is consistent with a dominant contribution from alpha-helical regions, although a broad high-frequency tail reflects a variety of unordered conformations. The peak frequency is 12 cm-1 higher for cytochrome c from tuna than from horse, suggesting a less tightly wound structure, which is consistent with the lower denaturation temperature previously reported for the tuna protein. The amide I peak broadens when native protein (state III) is converted to the low- or high-pH forms (states II and IV), reflecting some disordering of the polypeptide chain, but the peak frequencies are unshifted, establishing that the alpha-helical segments are not completely unfolded in these states. Raising the pH to 13 (state V), however, does produce a frequency upshift, reflecting helix unfolding. The amide II and III frequencies are likewise consistent with a dominant alpha-helix contribution in the native proteins; they gain intensity, and amide III is shifted to a lower frequency, in states II and IV, consistent with partial disordering.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D013059 Spectrum Analysis, Raman Analysis of the intensity of Raman scattering of monochromatic light as a function of frequency of the scattered light. Raman Spectroscopy,Analysis, Raman Spectrum,Raman Optical Activity Spectroscopy,Raman Scattering,Raman Spectrum Analysis,Scattering, Raman,Spectroscopy, Raman
D014413 Tuna Common name for various species of large, vigorous ocean fishes in the family Scombridae. Tunas

Related Publications

R A Copeland, and T G Spiro
August 1972, Biochimica et biophysica acta,
R A Copeland, and T G Spiro
November 1980, Biochimica et biophysica acta,
R A Copeland, and T G Spiro
January 1976, Analytical chemistry,
R A Copeland, and T G Spiro
March 1977, Journal of the American Chemical Society,
R A Copeland, and T G Spiro
September 2023, Applied spectroscopy,
R A Copeland, and T G Spiro
March 2011, The Analyst,
Copied contents to your clipboard!