Use of oxonol V as a probe of membrane potential in proteoliposomes containing cytochrome oxidase in the submitochondrial orientation. 1990

C E Cooper, and D Bruce, and P Nicholls
Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.

Absorbance changes in the anionic dye bis[3-phenyl-5-oxoisoxazol-4-yl]pentamethineoxonol (oxonol V) can be used to monitor the membrane potential of liposomes and cytochrome c containing cytochrome oxidase proteoliposomes (c-loaded COV). Diffusion potentials (positive inside the vesicles) cause an increase in the dye extinction, with a maximum at 640 nm. A similar increase is seen upon energization of internally facing cytochrome oxidase molecules in c-loaded COV. Both "passive" and "active" responses are only seen when the dye is fully bound to the vesicle membrane. Calibration curves using potassium or n-butyltriphenylphosphonium ion (BTPP+) diffusion potentials are linear up to 100 mV and pass through the origin. Diffusion potentials (positive inside) also cause an increase and red shift in the oxonol V fluorescence emission spectrum. However, potentials of the same sign induced by cytochrome oxidase turnover induce a large fluorescence quenching in c-loaded COV. A similar anomaly has been observed with submitochondrial particles [Smith, J. C., Russ, P., Cooperman, B. S., & Chance, B. (1976) Biochemistry 15, 5094-5105]. A model is proposed consistent with these responses. It is suggested that the dye molecules move further into the membrane phase upon energization, causing the absorbance increase. In the presence of active enzyme, anionic dye molecules are attracted to a positive dipole on each enzyme molecule, causing self-quenching of the fluorescence.

UI MeSH Term Description Entries
D007555 Isoxazoles Azoles with an OXYGEN and a NITROGEN next to each other at the 1,2 positions, in contrast to OXAZOLES that have nitrogens at the 1,3 positions. Isoxazole
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010080 Oxazoles Five-membered heterocyclic ring structures containing an oxygen in the 1-position and a nitrogen in the 3-position, in distinction from ISOXAZOLES where they are at the 1,2 positions. Oxazole,1,3-Oxazolium-5-Oxides,Munchnones,1,3 Oxazolium 5 Oxides
D011510 Proteolipids Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
D002138 Calibration Determination, by measurement or comparison with a standard, of the correct value of each scale reading on a meter or other measuring instrument; or determination of the settings of a control device that correspond to particular values of voltage, current, frequency or other output. Calibrations
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes

Related Publications

C E Cooper, and D Bruce, and P Nicholls
October 1987, FEBS letters,
C E Cooper, and D Bruce, and P Nicholls
May 1985, FEBS letters,
C E Cooper, and D Bruce, and P Nicholls
June 1980, Biochimica et biophysica acta,
C E Cooper, and D Bruce, and P Nicholls
April 1969, Acta medicinae Okayama,
C E Cooper, and D Bruce, and P Nicholls
August 1985, Journal of biochemical and biophysical methods,
C E Cooper, and D Bruce, and P Nicholls
July 2013, Cytometry. Part A : the journal of the International Society for Analytical Cytology,
C E Cooper, and D Bruce, and P Nicholls
January 1979, The Journal of membrane biology,
C E Cooper, and D Bruce, and P Nicholls
November 1992, Annals of the New York Academy of Sciences,
C E Cooper, and D Bruce, and P Nicholls
April 1978, Biochimica et biophysica acta,
Copied contents to your clipboard!