Ventral hippocampal dentate granule cell lesions enhance motor seizures but reduce wet dog shakes induced by mu opioid receptor agonist. 1990

P H Lee, and J S Hong
Neuropharmacology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709.

The role of the ventral hippocampal dentate granule neurons in the mu opioid receptor agonist-induced motor seizures and wet dog shakes was examined in this study. [NMe-Phe3-D-Pro4]morphiceptin (9.4 nmol) was injected into the left ventral hippocampus of rats 14 days after unilateral or bilateral colchicine (5 nmol/site) lesions of ventral hippocampal dentate granule cells and the subsequent behavioral and neuropathological responses were observed. [NMe-Phe3-D-Pro4]morphiceptin injected into control animals produced convulsions and numerous wet dog shakes that lasted for less than 1 h. [NMe-Phe-D-Pro4]morphiceptin-induced wet dog shakes were significantly reduced in unilateral colchicine-pretreated rats, and completely inhibited in bilateral colchicine-pretreated animals. In contrast, generalized motor seizures evoked by [NMe-Phe3-D-Pro4]morphiceptin were potentiated and prolonged in colchicine-pretreated animals as status epilepticus (sustained clonus of forepaws and head for more than 1 h) was observed in both unilateral and bilateral colchicine-pretreated animals but not in control rats. No morphological damage of granule or pyramidal cells was found in the ventral hippocampus of control animals following [NMe-Phe3-D-Pro4]morphiceptin injection. Colchicine treatment by itself produced a selective lesion of dentate granule cells. In colchicine-pretreated animals, [NMe-Phe3-D-Pro4]morphiceptin induced widespread seizure-related damage of CA3/CA1 pyramidal cells. These results suggest that dentate granule cells in the ventral hippocampus are essential for the elaboration of wet dog shakes. However, these neurons may play an inhibitory role in the spread of seizure activity within the hippocampus or limbic structures.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D003292 Convulsants Substances that act in the brain stem or spinal cord to produce tonic or clonic convulsions, often by removing normal inhibitory tone. They were formerly used to stimulate respiration or as antidotes to barbiturate overdose. They are now most commonly used as experimental tools. Convulsant,Convulsant Effect,Convulsant Effects,Effect, Convulsant,Effects, Convulsant
D004723 Endorphins One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group. Endorphin
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012640 Seizures Clinical or subclinical disturbances of cortical function due to a sudden, abnormal, excessive, and disorganized discharge of brain cells. Clinical manifestations include abnormal motor, sensory and psychic phenomena. Recurrent seizures are usually referred to as EPILEPSY or "seizure disorder." Absence Seizure,Absence Seizures,Atonic Absence Seizure,Atonic Seizure,Clonic Seizure,Complex Partial Seizure,Convulsion,Convulsions,Convulsive Seizure,Convulsive Seizures,Epileptic Seizure,Epileptic Seizures,Generalized Absence Seizure,Generalized Tonic-Clonic Seizures,Jacksonian Seizure,Myoclonic Seizure,Non-Epileptic Seizure,Nonepileptic Seizure,Partial Seizure,Seizure,Seizures, Convulsive,Seizures, Focal,Seizures, Generalized,Seizures, Motor,Seizures, Sensory,Tonic Clonic Seizure,Tonic Seizure,Tonic-Clonic Seizure,Atonic Absence Seizures,Atonic Seizures,Clonic Seizures,Complex Partial Seizures,Convulsion, Non-Epileptic,Generalized Absence Seizures,Myoclonic Seizures,Non-Epileptic Seizures,Nonepileptic Seizures,Partial Seizures,Petit Mal Convulsion,Seizures, Auditory,Seizures, Clonic,Seizures, Epileptic,Seizures, Gustatory,Seizures, Olfactory,Seizures, Somatosensory,Seizures, Tonic,Seizures, Tonic-Clonic,Seizures, Vertiginous,Seizures, Vestibular,Seizures, Visual,Single Seizure,Tonic Seizures,Tonic-Clonic Seizures,Absence Seizure, Atonic,Absence Seizure, Generalized,Absence Seizures, Atonic,Absence Seizures, Generalized,Auditory Seizure,Auditory Seizures,Clonic Seizure, Tonic,Clonic Seizures, Tonic,Convulsion, Non Epileptic,Convulsion, Petit Mal,Convulsions, Non-Epileptic,Focal Seizure,Focal Seizures,Generalized Seizure,Generalized Seizures,Generalized Tonic Clonic Seizures,Generalized Tonic-Clonic Seizure,Gustatory Seizure,Gustatory Seizures,Motor Seizure,Motor Seizures,Non Epileptic Seizure,Non Epileptic Seizures,Non-Epileptic Convulsion,Non-Epileptic Convulsions,Olfactory Seizure,Olfactory Seizures,Partial Seizure, Complex,Partial Seizures, Complex,Seizure, Absence,Seizure, Atonic,Seizure, Atonic Absence,Seizure, Auditory,Seizure, Clonic,Seizure, Complex Partial,Seizure, Convulsive,Seizure, Epileptic,Seizure, Focal,Seizure, Generalized,Seizure, Generalized Absence,Seizure, Generalized Tonic-Clonic,Seizure, Gustatory,Seizure, Jacksonian,Seizure, Motor,Seizure, Myoclonic,Seizure, Non-Epileptic,Seizure, Nonepileptic,Seizure, Olfactory,Seizure, Partial,Seizure, Sensory,Seizure, Single,Seizure, Somatosensory,Seizure, Tonic,Seizure, Tonic Clonic,Seizure, Tonic-Clonic,Seizure, Vertiginous,Seizure, Vestibular,Seizure, Visual,Seizures, Generalized Tonic-Clonic,Seizures, Nonepileptic,Sensory Seizure,Sensory Seizures,Single Seizures,Somatosensory Seizure,Somatosensory Seizures,Tonic Clonic Seizures,Tonic-Clonic Seizure, Generalized,Tonic-Clonic Seizures, Generalized,Vertiginous Seizure,Vertiginous Seizures,Vestibular Seizure,Vestibular Seizures,Visual Seizure,Visual Seizures
D017450 Receptors, Opioid, mu A class of opioid receptors recognized by its pharmacological profile. Mu opioid receptors bind, in decreasing order of affinity, endorphins, dynorphins, met-enkephalin, and leu-enkephalin. They have also been shown to be molecular receptors for morphine. Morphine Receptors,Opioid Receptors, mu,Receptors, Morphine,Receptors, mu,Receptors, mu Opioid,mu Receptors,Morphine Receptor,mu Opioid Receptor,mu Receptor,Opioid Receptor, mu,Receptor, Morphine,Receptor, mu,Receptor, mu Opioid,mu Opioid Receptors
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

P H Lee, and J S Hong
January 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P H Lee, and J S Hong
January 1987, Advances in experimental medicine and biology,
P H Lee, and J S Hong
October 1996, Brain research,
P H Lee, and J S Hong
October 1992, European journal of pharmacology,
Copied contents to your clipboard!