Purification and characterization of glycosyl-phosphatidylinositol-specific phospholipase D. 1990

K S Huang, and S Li, and W J Fung, and J D Hulmes, and L Reik, and Y C Pan, and M G Low
Department of Protein Biochemistry, Hoffmann-La Roche Inc., Nutley, New Jersey 07110.

We have developed a simple immunoaffinity chromatography procedure for the purification of a glycosyl-phosphatidylinositol (GPI)-specific phospholipase D (GPI-PLD) from bovine serum. The enzyme was initially purified by a procedure consisting of 9% polyethylene glycol precipitation, Q Sepharose anion-exchange chromatography, S-300 gel filtration, wheat germ lectin-Sepharose, hydroxylapatite agarose, zinc chelate matrix, Mono Q-high performance liquid chromatography (HPLC), and Superose 12 (gel filtration) HPLC. Using this purified material as immunogen, we generated a panel of monoclonal antibodies. A low affinity antibody was selected for the purification of catalytically active GPI-PLD from bovine serum by immunoaffinity chromatography, followed by wheat germ lectin-Sepharose and Mono Q-fast protein liquid chromatography. The latter method provides a simple purification procedure with an overall yield of 26%. The purified enzyme has an apparent molecular weight of about 100,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a pI of about 5.6 by isoelectric focusing gel analysis. On Superose 12 HPLC, the material purified by the latter method elutes as a single peak with an apparent molecular weight of 200,000 as determined by protein standards. The enzyme activity is inhibited by [ethylenebis(oxyethylenenitrilo)]tetraacetic acid or 1,10-phenanthroline. Phosphatidic acid is the only 3H-labeled product when [3H]myristate-labeled variant surface glycoprotein is hydrolyzed by the purified enzyme. Amino terminal sequence analysis of the intact 100-kDa protein reveals no strong homology to that of any other known protein. Twelve tryptic peptides derived from the intact protein have been subjected to amino acid sequence analysis. Two of them share sequence homology with each other and with the metal ion binding domains of members of the integrin family. Based upon these criteria, it appears that the purified enzyme is distinct from other phospholipases with specificity for inositol phospholipids.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010739 Phospholipase D An enzyme found mostly in plant tissue. It hydrolyzes glycerophosphatidates with the formation of a phosphatidic acid and a nitrogenous base such as choline. This enzyme also catalyzes transphosphatidylation reactions. EC 3.1.4.4. Lecithinase D,Phosphatidylcholine Phosphohydrolase
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked

Related Publications

K S Huang, and S Li, and W J Fung, and J D Hulmes, and L Reik, and Y C Pan, and M G Low
August 1989, The Journal of biological chemistry,
K S Huang, and S Li, and W J Fung, and J D Hulmes, and L Reik, and Y C Pan, and M G Low
July 1993, FEBS letters,
K S Huang, and S Li, and W J Fung, and J D Hulmes, and L Reik, and Y C Pan, and M G Low
October 1992, Infection and immunity,
K S Huang, and S Li, and W J Fung, and J D Hulmes, and L Reik, and Y C Pan, and M G Low
January 1989, The International journal of biochemistry,
K S Huang, and S Li, and W J Fung, and J D Hulmes, and L Reik, and Y C Pan, and M G Low
September 1982, Journal of biochemistry,
K S Huang, and S Li, and W J Fung, and J D Hulmes, and L Reik, and Y C Pan, and M G Low
August 1993, The Journal of biological chemistry,
K S Huang, and S Li, and W J Fung, and J D Hulmes, and L Reik, and Y C Pan, and M G Low
January 1997, Annual review of biochemistry,
K S Huang, and S Li, and W J Fung, and J D Hulmes, and L Reik, and Y C Pan, and M G Low
December 1988, Proceedings of the National Academy of Sciences of the United States of America,
K S Huang, and S Li, and W J Fung, and J D Hulmes, and L Reik, and Y C Pan, and M G Low
September 1991, Biochimie,
K S Huang, and S Li, and W J Fung, and J D Hulmes, and L Reik, and Y C Pan, and M G Low
June 1989, Journal of cell science,
Copied contents to your clipboard!