The human erythrocyte contains two forms of phosphatidylinositol-4-phosphate 5-kinase which are differentially active toward membranes. 1990

C E Bazenet, and A R Ruano, and J L Brockman, and R A Anderson
Department of Pharmacology, University of Wisconsin Medical School, Madison 53706.

A human erythrocyte cytosolic phosphatidylinositol-4-phosphate 5-kinase (PIP kinase) and a membrane-bound PIP kinase have been purified by phosphocellulose chromatography. Fractionation of the membrane-bound PIP kinase activities by phosphocellulose separated activity into two peaks, which eluted at 0.6 M NaCl (type I PIP kinase) and 1.0 M NaCl (type II PIP kinase). The cytosolic PIP kinase and the membrane-bound type II PIP kinase are 53 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, have indistinguishable 125I-peptide maps, and are immunochemically indistinguishable, suggesting that they are sequence identical. Antibodies raised to the cytosolic PIP kinase inhibit activity of both the membrane-bound type II and the cytosolic PIP kinases. The type I PIP kinase appears to be distinct from the cytosolic and membrane-bound type II PIP kinase; it is not immunocross-reactive, and antibodies toward type II PIP kinases do not inhibit type I PIP kinase. Further, membrane-bound type II PIP kinase can be removed from type I PIP kinase without loss of activity. Functional characterization of the PIP kinases demonstrates that the type I kinase has a 10-fold lower Km for PIP and a 5-fold higher Km for ATP compared with the type II enzymes. The type I and type II (membrane-bound or cytosolic) PIP kinases are modulated differentially by spermine and heparin. Finally, the type I PIP kinase phosphorylates intrinsic PIP on isolated erythrocyte membranes, whereas the type II PIP kinases have no activity toward native membranes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts

Related Publications

C E Bazenet, and A R Ruano, and J L Brockman, and R A Anderson
January 1992, Methods in enzymology,
C E Bazenet, and A R Ruano, and J L Brockman, and R A Anderson
January 2013, Methods in molecular biology (Clifton, N.J.),
C E Bazenet, and A R Ruano, and J L Brockman, and R A Anderson
October 1991, Thrombosis research,
C E Bazenet, and A R Ruano, and J L Brockman, and R A Anderson
January 1994, Platelets,
C E Bazenet, and A R Ruano, and J L Brockman, and R A Anderson
August 1991, European journal of biochemistry,
C E Bazenet, and A R Ruano, and J L Brockman, and R A Anderson
January 1996, Advances in enzyme regulation,
C E Bazenet, and A R Ruano, and J L Brockman, and R A Anderson
May 1993, Biochimica et biophysica acta,
C E Bazenet, and A R Ruano, and J L Brockman, and R A Anderson
January 1984, Journal of lipid research,
C E Bazenet, and A R Ruano, and J L Brockman, and R A Anderson
January 2015, Advances in biological regulation,
Copied contents to your clipboard!