Opioid receptor subtypes in the supraoptic nucleus and posterior pituitary gland of morphine-tolerant rats. 1990

B E Sumner, and J E Coombes, and K M Pumford, and J A Russell
Department of Physiology, University Medical School, Edinburgh, U.K.

Morphine, given acutely, inhibits oxytocin secretion in adult female rats, but chronic intracerebroventricular infusion for five to six days induces tolerance and dependence in the mechanisms regulating oxytocin secretion. One explanation for tolerance could be that there is a loss of opioid receptors. To test this hypothesis cryostat sections of selected brain regions and the pituitary, from six control and six intracerebroventricular morphine-infused rats, were processed for quantitative in vitro receptor autoradiography. [3H]Etorphine or [3H](-)-bremazocine were used as ligands, and DAGO, DPDPE and U50,488H as selective displacers from mu-, delta-, and kappa-receptors, respectively. Control incubations had naloxone determined specificity. The supraoptic nucleus (site of oxytocin-secreting magnocellular perikarya) contained both mu- and kappa-receptors in control rats (mean +/- S.E.M. binding of mu-selective [3H]etorphine was 91.8 +/- 25.4 fmol/mg of tissue, and of kappa-selective [3H](-)-bremazocine was 130.4 +/- 25.6 fmol/mg). Chronic morphine treatment caused a 83.9% decrease in binding in mu-selective conditions (P less than 0.05), but no significant change in kappa-selective binding. In the median preoptic nucleus (which projects to the supraoptic nucleus) mean +/- S.E.M. binding of [3H]etorphine decreased by 77.0% (P less than 0.01) in chronic morphine-treated rats, from the control value of 76.2 +/- 9.8 fmol/mg of tissue. In the posterior pituitary gland (site of the terminals of the oxytocin-secreting magnocellular perikarya) binding with [3H](-)-bremazocine in controls was over 90% lower than in the supraoptic nucleus. No changes followed chronic morphine treatment. Thus chronic morphine exposure reduces the numbers of available mu-receptors in the supraoptic nucleus, and of opioid receptors in the median preoptic nucleus, perhaps accounting for morphine-tolerance in relation to oxytocin secretion.

UI MeSH Term Description Entries
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D010904 Pituitary Gland, Posterior Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland. Neurohypophysis,Infundibular Process,Lobus Nervosus,Neural Lobe,Pars Nervosa of Pituitary,Posterior Lobe of Pituitary,Gland, Posterior Pituitary,Infundibular Processes,Lobe, Neural,Lobes, Neural,Nervosus, Lobus,Neural Lobes,Pituitary Pars Nervosa,Pituitary Posterior Lobe,Posterior Pituitary Gland,Posterior Pituitary Glands,Process, Infundibular,Processes, Infundibular
D010949 Plasma The residual portion of BLOOD that is left after removal of BLOOD CELLS by CENTRIFUGATION without prior BLOOD COAGULATION. Blood Plasma,Fresh Frozen Plasma,Blood Plasmas,Fresh Frozen Plasmas,Frozen Plasma, Fresh,Frozen Plasmas, Fresh,Plasma, Blood,Plasma, Fresh Frozen,Plasmas,Plasmas, Blood,Plasmas, Fresh Frozen
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D004361 Drug Tolerance Progressive diminution of the susceptibility of a human or animal to the effects of a drug, resulting from its continued administration. It should be differentiated from DRUG RESISTANCE wherein an organism, disease, or tissue fails to respond to the intended effectiveness of a chemical or drug. It should also be differentiated from MAXIMUM TOLERATED DOSE and NO-OBSERVED-ADVERSE-EFFECT LEVEL. Drug Tolerances,Tolerance, Drug,Tolerances, Drug
D004745 Enkephalins One of the three major families of endogenous opioid peptides. The enkephalins are pentapeptides that are widespread in the central and peripheral nervous systems and in the adrenal medulla. Enkephalin

Related Publications

B E Sumner, and J E Coombes, and K M Pumford, and J A Russell
March 1992, Neuroscience letters,
B E Sumner, and J E Coombes, and K M Pumford, and J A Russell
August 1964, Biulleten' eksperimental'noi biologii i meditsiny,
B E Sumner, and J E Coombes, and K M Pumford, and J A Russell
December 2023, MethodsX,
B E Sumner, and J E Coombes, and K M Pumford, and J A Russell
January 1998, Brain research,
B E Sumner, and J E Coombes, and K M Pumford, and J A Russell
November 1988, European journal of pharmacology,
B E Sumner, and J E Coombes, and K M Pumford, and J A Russell
January 1993, Experimental brain research,
B E Sumner, and J E Coombes, and K M Pumford, and J A Russell
January 2009, Neural plasticity,
B E Sumner, and J E Coombes, and K M Pumford, and J A Russell
October 1991, Neurologia medico-chirurgica,
B E Sumner, and J E Coombes, and K M Pumford, and J A Russell
November 1997, The Journal of physiology,
B E Sumner, and J E Coombes, and K M Pumford, and J A Russell
January 2022, Journal of neuroscience research,
Copied contents to your clipboard!