Activation and expansion of tumour-infiltrating lymphocytes by anti-CD3 and anti-CD28 monoclonal antibodies. 1990

E W Nijhuis, and E vd Wiel-van Kemenade, and C G Figdor, and R A van Lier
Central Laboratory of the Netherlands Red Cross Blood Transfusion Service, University of Amsterdam.

Cytotoxic T lymphocytes from healthy donors can be expanded to high numbers from the peripheral blood using combinations of anti-CD3 and anti-CD28 monoclonal antibodies (mAb). We investigated whether these antibodies could also be used to induce outgrowth of tumour-infiltrating lymphocytes (TIL) from tumour tissue. In the initiation phase of TIL culture immobilized anti-CD3 antibodies together with anti-CD28 mAb and low-dose interleukin-2 induced a rapid expansion of T cells from various human tumour tissues. The cultured cells showed high levels of cytotoxic T lymphocyte activity, but low levels of lymphokine-activated killer cell activity were generated. This study shows that TIL can be efficiently expanded from tumour tissue by combinations of anti-CD3 and anti-CD28 antibodies. This protocol for cell expansion in vitro may substantially reduce the time required to reach sufficient numbers of TIl for re-infusion to the patient.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation
D016246 Lymphocytes, Tumor-Infiltrating Lymphocytes that show specificity for autologous tumor cells. Ex vivo isolation and culturing of TIL with interleukin-2, followed by reinfusion into the patient, is one form of adoptive immunotherapy of cancer. Tumor Infiltrating Lymphocyte,Tumor-Derived Activated Cell,Tumor-Derived Activated Cells,Tumor-Infiltrating Lymphocyte,Tumor-Infiltrating Lymphocytes,Activated Cell, Tumor-Derived,Activated Cells, Tumor-Derived,Infiltrating Lymphocyte, Tumor,Infiltrating Lymphocytes, Tumor,Lymphocyte, Tumor Infiltrating,Lymphocyte, Tumor-Infiltrating,Lymphocytes, Tumor Infiltrating,Tumor Derived Activated Cell,Tumor Derived Activated Cells,Tumor Infiltrating Lymphocytes

Related Publications

E W Nijhuis, and E vd Wiel-van Kemenade, and C G Figdor, and R A van Lier
October 1993, Cancer immunology, immunotherapy : CII,
E W Nijhuis, and E vd Wiel-van Kemenade, and C G Figdor, and R A van Lier
February 1990, Cancer research,
E W Nijhuis, and E vd Wiel-van Kemenade, and C G Figdor, and R A van Lier
September 1989, Journal of leukocyte biology,
E W Nijhuis, and E vd Wiel-van Kemenade, and C G Figdor, and R A van Lier
March 1996, Immunology,
E W Nijhuis, and E vd Wiel-van Kemenade, and C G Figdor, and R A van Lier
May 1989, European journal of immunology,
E W Nijhuis, and E vd Wiel-van Kemenade, and C G Figdor, and R A van Lier
August 2011, Scandinavian journal of immunology,
E W Nijhuis, and E vd Wiel-van Kemenade, and C G Figdor, and R A van Lier
September 1999, Transplantation,
E W Nijhuis, and E vd Wiel-van Kemenade, and C G Figdor, and R A van Lier
May 1990, Cancer research,
E W Nijhuis, and E vd Wiel-van Kemenade, and C G Figdor, and R A van Lier
January 1992, Virchows Archiv. A, Pathological anatomy and histopathology,
E W Nijhuis, and E vd Wiel-van Kemenade, and C G Figdor, and R A van Lier
August 2001, Journal of chemotherapy (Florence, Italy),
Copied contents to your clipboard!