Efficient expansion of tumor-infiltrating lymphocytes from solid tumors by stimulation with combined CD3 and CD28 monoclonal antibodies. 1993

M J Flens, and W M Mulder, and H Bril, and M B von Blomberg van de Flier, and R J Scheper, and R A van Lier
Central Laboratory of The Netherlands Red Cross Blood Transfusion Service, Amsterdam, The Netherlands.

Combined CD3 and CD28 monoclonal antibodies (mAb) may initiate efficient activation and expansion of tumor-infiltrating lymphocytes (TIL). In this study we compared phenotypical and functional characteristics of TIL from a group of 17 solid human tumors, stimulated either by high-dose recombinant interleukin 2 (rIL-2, 1000 IU/ml) or by a combination of anti-CD3 and anti-CD28 monoclonal antibodies in the presence of low-dose rIL-2 (10 IU/ml). Compared to activation with high-dose rIL-2, stimulation of TIL with CD3/CD28 mAb induced significantly stronger proliferation and yielded higher levels of cell recovery on day 14. Following the CD3/CD28 protocol, expansion of an almost pure population of CD3+ cells was obtained. Whereas CD4+ cells dominated in the first week of culturing, within 4 weeks the CD8+ population increased to over 90%. The specific capacity to kill autologous tumor cells was not increased as compared to the high-dose rIL-2 protocol, but all cultures showed high cytotoxic T cell activity as measured in a CD3-mAb-mediated redirected kill assay. These studies show that combined CD3 and CD28 mAb are superior to rIL-2 with respect to the initiation of expansion of CD8+ cytolytic TIL from solid tumors. Stimulation with specific tumor antigens at a later stage of culturing may further augment the expansion of tumor-specific cytolytic T cells.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016130 Immunophenotyping Process of classifying cells of the immune system based on structural and functional differences. The process is commonly used to analyze and sort T-lymphocytes into subsets based on CD antigens by the technique of flow cytometry. Lymphocyte Immunophenotyping,Lymphocyte Subtyping,Immunologic Subtyping,Immunologic Subtypings,Lymphocyte Phenotyping,Subtyping, Immunologic,Subtypings, Immunologic,Immunophenotyping, Lymphocyte,Immunophenotypings,Immunophenotypings, Lymphocyte,Lymphocyte Immunophenotypings,Lymphocyte Phenotypings,Lymphocyte Subtypings,Phenotyping, Lymphocyte,Phenotypings, Lymphocyte,Subtyping, Lymphocyte,Subtypings, Lymphocyte
D016246 Lymphocytes, Tumor-Infiltrating Lymphocytes that show specificity for autologous tumor cells. Ex vivo isolation and culturing of TIL with interleukin-2, followed by reinfusion into the patient, is one form of adoptive immunotherapy of cancer. Tumor Infiltrating Lymphocyte,Tumor-Derived Activated Cell,Tumor-Derived Activated Cells,Tumor-Infiltrating Lymphocyte,Tumor-Infiltrating Lymphocytes,Activated Cell, Tumor-Derived,Activated Cells, Tumor-Derived,Infiltrating Lymphocyte, Tumor,Infiltrating Lymphocytes, Tumor,Lymphocyte, Tumor Infiltrating,Lymphocyte, Tumor-Infiltrating,Lymphocytes, Tumor Infiltrating,Tumor Derived Activated Cell,Tumor Derived Activated Cells,Tumor Infiltrating Lymphocytes

Related Publications

M J Flens, and W M Mulder, and H Bril, and M B von Blomberg van de Flier, and R J Scheper, and R A van Lier
January 1990, Cancer immunology, immunotherapy : CII,
M J Flens, and W M Mulder, and H Bril, and M B von Blomberg van de Flier, and R J Scheper, and R A van Lier
January 1987, Progress in clinical and biological research,
M J Flens, and W M Mulder, and H Bril, and M B von Blomberg van de Flier, and R J Scheper, and R A van Lier
February 1990, Cancer research,
M J Flens, and W M Mulder, and H Bril, and M B von Blomberg van de Flier, and R J Scheper, and R A van Lier
January 2019, Methods in molecular biology (Clifton, N.J.),
M J Flens, and W M Mulder, and H Bril, and M B von Blomberg van de Flier, and R J Scheper, and R A van Lier
January 2016, Journal for immunotherapy of cancer,
M J Flens, and W M Mulder, and H Bril, and M B von Blomberg van de Flier, and R J Scheper, and R A van Lier
January 1994, Immunology series,
M J Flens, and W M Mulder, and H Bril, and M B von Blomberg van de Flier, and R J Scheper, and R A van Lier
August 2001, Journal of chemotherapy (Florence, Italy),
M J Flens, and W M Mulder, and H Bril, and M B von Blomberg van de Flier, and R J Scheper, and R A van Lier
May 1990, Cancer research,
M J Flens, and W M Mulder, and H Bril, and M B von Blomberg van de Flier, and R J Scheper, and R A van Lier
April 2003, Journal of immunological methods,
M J Flens, and W M Mulder, and H Bril, and M B von Blomberg van de Flier, and R J Scheper, and R A van Lier
June 1987, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!