Reduction of the potent DNA polymerase III holoenzyme 3'----5' exonuclease activity by template-primer analogues. 1990

M A Griep, and J A Reems, and M A Franden, and C S McHenry
Department of Biochemistry, Biophysics, and Genetics, University of Colorado Health Sciences Center, Denver 80262.

The DNA polymerase III holoenzyme of Escherichia coli contains a potent 3'----5' exonuclease that removes the terminal nucleotide from a synthetic deoxyoligonucleotide primer with a half-life of approximately 2 s. Degradation of primers could not be effectively prevented by permitting the holoenzyme to "idle" at the primer terminus in the presence of limited deoxynucleoside triphosphates. To further characterize this exonuclease and to develop stable primers to facilitate experimental manipulations, we synthesized a series of twelve 25-mer oligonucleotides that differed only in the two 3'-terminal residues. The penultimate position contained either a CMP or a dCMP residue, while at the terminal position either AMP, dAMP, 2',3'-dideoxyAMP, cordycepin (3'-dAMP), dAMP alpha S, or 2',3'-dideoxyAMP alpha S was incorporated. No single change at either the 3'-penultimate or 3'-terminal positions resulted in a decrease in the exonuclease rate greater than 10-fold; however, combined changes at these two sites resulted in a strong synergistic effect. Placing a ribonucleotide at the penultimate position coupled by a phosphorothioate linkage to a terminal 2',3'-dideoxynucleotide reduced the rate of exonucleolytic activity almost 30,000-fold (half-life approximately 16 h). If only the ribonucleotide and phosphorothioate substitutions were made, a primer capable of being efficiently elongated was generated that exhibited a 500-fold increase in stability (half-life = 40 min). The elemental effect observed by substituting a nonbridging oxygen in the terminal phosphodiester bond for sulfur increased from 1.5 to 200 as other substitutions were made that decreased the exonuclease rate. This was consistent with a change in the rate-limiting step of the exonuclease reaction from a conformational change to the chemical step where the covalent bond is cleaved. At least part of this effect appears to be due to perturbations within the enzyme's active site and not solely due to changes in electrophilicity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003854 Deoxyribonucleotides A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group. Deoxyribonucleotide
D004258 DNA Polymerase III A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms but may be present in higher organisms. Use also for a more complex form of DNA polymerase III designated as DNA polymerase III* or pol III* which is 15 times more active biologically than DNA polymerase I in the synthesis of DNA. This polymerase has both 3'-5' and 5'-3' exonuclease activities, is inhibited by sulfhydryl reagents, and has the same template-primer dependence as pol II. DNA Polymerase delta,DNA-Dependent DNA Polymerase III,DNA Pol III,DNA Dependent DNA Polymerase III,Polymerase III, DNA,Polymerase delta, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005092 Exonucleases Enzymes that catalyze the release of mononucleotides by the hydrolysis of the terminal bond of deoxyribonucleotide or ribonucleotide chains. Exonuclease,3'-5'-Exonuclease,3'-5'-Exonucleases,5'-3'-Exonuclease,5'-3'-Exonucleases,3' 5' Exonuclease,3' 5' Exonucleases,5' 3' Exonuclease,5' 3' Exonucleases
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

M A Griep, and J A Reems, and M A Franden, and C S McHenry
April 1983, Journal of molecular biology,
M A Griep, and J A Reems, and M A Franden, and C S McHenry
March 1995, The Journal of biological chemistry,
M A Griep, and J A Reems, and M A Franden, and C S McHenry
August 1996, The Journal of biological chemistry,
M A Griep, and J A Reems, and M A Franden, and C S McHenry
January 1990, The Journal of biological chemistry,
M A Griep, and J A Reems, and M A Franden, and C S McHenry
October 1991, The Journal of biological chemistry,
M A Griep, and J A Reems, and M A Franden, and C S McHenry
June 1976, Biochemistry,
M A Griep, and J A Reems, and M A Franden, and C S McHenry
November 1984, Biochemistry,
M A Griep, and J A Reems, and M A Franden, and C S McHenry
April 1983, Biochemical and biophysical research communications,
M A Griep, and J A Reems, and M A Franden, and C S McHenry
September 1998, Nucleic acids research,
Copied contents to your clipboard!