Modification of noradrenergic innervation in the cerebellum of mutant rats with Purkinje cell degeneration (jaundiced Gunn rats). 1990

M Onozuka, and K Kubo, and S Deura, and N Karasawa, and I Nagatsu
Department of Anatomy, Gifu University School of Medicine, Japan.

In heterozygous (Jj) and homozygous Gunn rats (jj), cerebellar noradrenergic innervation was examined using immunohistochemical, neurochemical and electrophysiological techniques. Immunohistochemical analysis using an antiserum against tyrosine hydroxylase (TH) revealed a marked enhancement in immunoreactivity largely in the granular layer and the whole nuclei in the jj cerebellum, resulting from an increase in TH-immunoreactive varicose fibers forming synapse-like structures on the somata and dendrites of granule cells or nuclear neurons. The concentration of norepinephrine in both the cortical and nuclear regions of the jj cerebellum was significantly higher than that in the control, whereas no significant difference of this total amount was observed between the jj and Jj cerebella. Injection of norepinephrine into the Jj cerebellar nuclei reduced the firing rate of spontaneous unitary discharges of neurons in the interpositus nucleus. These findings suggest that the the jj cerebellum causes an enhancement of the noradrenergic innervation which may possibly be one of its characteristic alterations.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D011911 Rats, Gunn Mutant strain of Rattus norvegicus which is used as a disease model of kernicterus. Gunn Rat,Gunn Rats,Rat, Gunn
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011922 Rats, Mutant Strains Rats bearing mutant genes which are phenotypically expressed in the animals. Mutant Strains Rat,Mutant Strains Rats,Rat, Mutant Strains,Strains Rat, Mutant,Strains Rats, Mutant
D012110 Reserpine An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. Raunervil,Raupasil,Rausedil,Rausedyl,Serpasil,Serpivite,V-Serp,V Serp
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance

Related Publications

M Onozuka, and K Kubo, and S Deura, and N Karasawa, and I Nagatsu
August 1986, Neuroscience,
M Onozuka, and K Kubo, and S Deura, and N Karasawa, and I Nagatsu
July 1989, Brain research,
M Onozuka, and K Kubo, and S Deura, and N Karasawa, and I Nagatsu
January 1989, Biology of the neonate,
M Onozuka, and K Kubo, and S Deura, and N Karasawa, and I Nagatsu
December 1981, Brain research bulletin,
M Onozuka, and K Kubo, and S Deura, and N Karasawa, and I Nagatsu
June 1987, Journal of neurochemistry,
M Onozuka, and K Kubo, and S Deura, and N Karasawa, and I Nagatsu
January 1987, Neurochemistry international,
M Onozuka, and K Kubo, and S Deura, and N Karasawa, and I Nagatsu
October 1998, Experimental neurology,
M Onozuka, and K Kubo, and S Deura, and N Karasawa, and I Nagatsu
March 1988, Journal of neurochemistry,
M Onozuka, and K Kubo, and S Deura, and N Karasawa, and I Nagatsu
June 2007, Developmental neurobiology,
M Onozuka, and K Kubo, and S Deura, and N Karasawa, and I Nagatsu
February 2015, Neuropharmacology,
Copied contents to your clipboard!