Transcription factor requirements for in vitro formation of transcriptionally competent 5S rRNA gene chromatin. 1990

S J Felts, and P A Weil, and R Chalkley
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232.

The Saccharomyces cerevisiae 5S rRNA gene was used as a model system to study the requirements for assembling transcriptionally active chromatin in vitro with purified components. When a plasmid containing yeast 5S rDNA was assembled into chromatin with purified core histones, the gene was inaccessible to the yeast class III gene transcription machinery. Preformation of a 5S rRNA gene-TFIIIA complex was not sufficient for the formation of active chromatin in this in vitro system. Instead, a complete transcription factor complex consisting of TFIIIA, TFIIIB, and TFIIIC needed to be formed before the addition of histones in order for the 5S chromatin to subsequently be transcribed by RNA polymerase III. Various 5S rRNA maxigenes were constructed and used for chromatin assembly studies. In vitro transcription from these assembled 5S maxigenes revealed that RNA polymerase III was readily able to transcribe through one, two, or four nucleosomes. However, we found that RNA polymerase III was not able to efficiently transcribe a chromatin template containing a more extended array of nucleosomes. In vivo expression experiments indicated that all in vitro-constructed maxigenes were transcriptionally competent. Analyses of protein-DNA interactions formed on these maxigenes in vivo by indirect end labeling indicated that there are extensive interactions throughout the length of these maxigenes. The patterns of protein-DNA interactions formed on these genes are consistent with these DNAs being assembled into extensive nucleosomal arrays.

UI MeSH Term Description Entries
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D010750 Phosphoproteins Phosphoprotein
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D012320 RNA Polymerase III A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure where it transcribes DNA into RNA. It has specific requirements for cations and salt and has shown an intermediate sensitivity to alpha-amanitin in comparison to RNA polymerase I and II. DNA-Dependent RNA Polymerase III,RNA Polymerase C,DNA Dependent RNA Polymerase III,Polymerase C, RNA,Polymerase III, RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012341 RNA, Ribosomal, 5S Constituent of the 50S subunit of prokaryotic ribosomes containing about 120 nucleotides and 34 proteins. It is also a constituent of the 60S subunit of eukaryotic ribosomes. 5S rRNA is involved in initiation of polypeptide synthesis. 5S Ribosomal RNA,5S rRNA,RNA, 5S Ribosomal,Ribosomal RNA, 5S,rRNA, 5S

Related Publications

S J Felts, and P A Weil, and R Chalkley
April 1982, Cell,
S J Felts, and P A Weil, and R Chalkley
November 1984, Nucleic acids research,
S J Felts, and P A Weil, and R Chalkley
December 1990, Nucleic acids research,
S J Felts, and P A Weil, and R Chalkley
November 1992, The Journal of biological chemistry,
S J Felts, and P A Weil, and R Chalkley
September 1982, Nucleic acids research,
S J Felts, and P A Weil, and R Chalkley
July 1998, Biochimica et biophysica acta,
S J Felts, and P A Weil, and R Chalkley
April 1983, Proceedings of the National Academy of Sciences of the United States of America,
S J Felts, and P A Weil, and R Chalkley
April 1991, Nucleic acids research,
S J Felts, and P A Weil, and R Chalkley
January 1997, Nucleic acids research,
S J Felts, and P A Weil, and R Chalkley
January 1988, Nucleic acids research,
Copied contents to your clipboard!