Differential requirements for basic amino acids in transcription factor IIIA-5S gene interaction. 1998

J S Hanas, and G Koelsch, and R Moreland, and J Q Wickham
Department of Biochemistry and Molecular Biology, University of Oklahoma College of Medicine, 940 Stanton Young Blvd., Oklahoma City, OK 73140, USA. jhanas@aardvark.ucs.uoknor.edu

Basic amino acids Arg, Lys, and His in the Cys2His2 zinc fingers of transcription factor IIIA (TFIIIA) potentially have important roles in factor binding to the extended internal control region (ICR) of the 5S ribosomal gene. Conserved and non-conserved basic residues in the N-terminal fingers I, II, III and the more C-terminal fingers V and IX were analyzed by site-directed mutagenesis and DNase I protection in order to assess their individual requirement in the DNA-binding mechanism. In the DNA recognition helix of finger II, the conserved Arg at position 62 (N-terminal side of the first zinc-coordinating histidine) was changed to a Leu or Gln. Both the R62L and R62Q mutations inhibited Xenopus TFIIIA-dependent DNase I footprinting along the entire 5S gene ICR. When His-58 (non-conserved basic residue with DNA-binding potential in the same helical region) was changed to a Gln, the mutated protein was able to protect the ICR from DNase I digestion. Therefore, Arg-62 is individually required for TFIIIA binding over the entire ICR whereas His-58 is not. Fingers V and IX have conserved Arg residues in positions identical to Arg-62 in finger II (Arg-154 in finger V and Arg-271 in finger IX). When these residues were changed to Leu and Ile respectively, TFIIIA-dependent DNase I protection was observed along the entire 5S gene ICR. These results indicate differing DNA-binding mechanisms by the N-terminal fingers versus the C-terminal fingers at the level of individual amino acid-nucleotide interactions. In the N-terminal finger I, the conserved Lys at position 11 outside the recognition helix and a conserved hydrophobic Trp at position 28 within the helix were changed to an Ala and Ser respectively. The K11A change inhibited TFIIIA-dependent DNase I protection to a much greater extent than the W28S change.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate
D012341 RNA, Ribosomal, 5S Constituent of the 50S subunit of prokaryotic ribosomes containing about 120 nucleotides and 34 proteins. It is also a constituent of the 60S subunit of eukaryotic ribosomes. 5S rRNA is involved in initiation of polypeptide synthesis. 5S Ribosomal RNA,5S rRNA,RNA, 5S Ribosomal,Ribosomal RNA, 5S,rRNA, 5S

Related Publications

J S Hanas, and G Koelsch, and R Moreland, and J Q Wickham
November 1984, Nucleic acids research,
J S Hanas, and G Koelsch, and R Moreland, and J Q Wickham
April 1983, Proceedings of the National Academy of Sciences of the United States of America,
J S Hanas, and G Koelsch, and R Moreland, and J Q Wickham
August 1989, Nature,
J S Hanas, and G Koelsch, and R Moreland, and J Q Wickham
September 1988, Cell,
J S Hanas, and G Koelsch, and R Moreland, and J Q Wickham
June 1987, FEBS letters,
J S Hanas, and G Koelsch, and R Moreland, and J Q Wickham
January 1990, Biochimie,
J S Hanas, and G Koelsch, and R Moreland, and J Q Wickham
May 1990, Molecular and cellular biology,
J S Hanas, and G Koelsch, and R Moreland, and J Q Wickham
February 1992, Proceedings of the National Academy of Sciences of the United States of America,
J S Hanas, and G Koelsch, and R Moreland, and J Q Wickham
April 1986, Biochemical Society transactions,
J S Hanas, and G Koelsch, and R Moreland, and J Q Wickham
August 1991, Molecular and cellular biology,
Copied contents to your clipboard!