Histaminergic mechanisms for modulation of memory systems. 2011

Cristiano André Köhler, and Weber Cláudio da Silva, and Fernando Benetti, and Juliana Sartori Bonini
Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, 90035-903 Porto Alegre, RS, Brazil.

Encoding for several memory types requires neural changes and the activity of distinct regions across the brain. These areas receive broad projections originating in nuclei located in the brainstem which are capable of modulating the activity of a particular area. The histaminergic system is one of the major modulatory systems, and it regulates basic homeostatic and higher functions including arousal, circadian, and feeding rhythms, and cognition. There is now evidence that histamine can modulate learning in different types of behavioral tasks, but the exact course of modulation and its mechanisms are controversial. In the present paper we review the involvement of the histaminergic system and the effects histaminergic receptor agonists/antagonists have on the performance of tasks associated with the main memory types as well as evidence provided by studies with knockout models. Thus, we aim to summarize the possible effects histamine has on modulation of circuits involved in memory formation.

UI MeSH Term Description Entries
D007858 Learning Relatively permanent change in behavior that is the result of past experience or practice. The concept includes the acquisition of knowledge. Phenomenography
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011968 Receptors, Histamine Cell-surface proteins that bind histamine and trigger intracellular changes influencing the behavior of cells. Histamine receptors are widespread in the central nervous system and in peripheral tissues. Three types have been recognized and designated H1, H2, and H3. They differ in pharmacology, distribution, and mode of action. Histamine Binding Sites,Histamine Receptors,Histamine Receptor,Binding Sites, Histamine,Receptor, Histamine,Sites, Histamine Binding
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003071 Cognition Intellectual or mental process whereby an organism obtains knowledge. Cognitive Function,Cognitions,Cognitive Functions,Function, Cognitive,Functions, Cognitive
D006632 Histamine An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter. Ceplene,Histamine Dihydrochloride,Histamine Hydrochloride,Peremin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

Cristiano André Köhler, and Weber Cláudio da Silva, and Fernando Benetti, and Juliana Sartori Bonini
October 2001, Behavioural brain research,
Cristiano André Köhler, and Weber Cláudio da Silva, and Fernando Benetti, and Juliana Sartori Bonini
December 2001, Current opinion in neurobiology,
Cristiano André Köhler, and Weber Cláudio da Silva, and Fernando Benetti, and Juliana Sartori Bonini
January 1977, Annual review of pharmacology and toxicology,
Cristiano André Köhler, and Weber Cláudio da Silva, and Fernando Benetti, and Juliana Sartori Bonini
August 2006, Proceedings of the National Academy of Sciences of the United States of America,
Cristiano André Köhler, and Weber Cláudio da Silva, and Fernando Benetti, and Juliana Sartori Bonini
April 1991, Indian journal of experimental biology,
Cristiano André Köhler, and Weber Cláudio da Silva, and Fernando Benetti, and Juliana Sartori Bonini
January 1987, Medical biology,
Cristiano André Köhler, and Weber Cláudio da Silva, and Fernando Benetti, and Juliana Sartori Bonini
December 1995, Naunyn-Schmiedeberg's archives of pharmacology,
Cristiano André Köhler, and Weber Cláudio da Silva, and Fernando Benetti, and Juliana Sartori Bonini
January 1986, Advances in experimental medicine and biology,
Cristiano André Köhler, and Weber Cláudio da Silva, and Fernando Benetti, and Juliana Sartori Bonini
October 2019, Nature neuroscience,
Cristiano André Köhler, and Weber Cláudio da Silva, and Fernando Benetti, and Juliana Sartori Bonini
January 1992, Journal of cognitive neuroscience,
Copied contents to your clipboard!