Comparative study on glucocerebrosidase in spleens from patients with Gaucher disease. 1990

J M Aerts, and W E Donker-Koopman, and S Brul, and S Van Weely, and M C Sa Miranda, and J A Barranger, and J M Tager, and A W Schram
E. C. Slater Institute for Biochemical Research, University of Amsterdam, The Netherlands.

In Gaucher disease (glucosylceramide lipidosis), deficiency of glucocerebrosidase causes pathological storage of glucosylceramide, particularly in the spleen. A comparative biochemical and immunological analysis has therefore been made of glucocerebrosidase in spleens from normal subjects (n = 4) and from Gaucher disease patients with non-neuronopathic (n = 5) and neuronopathic (n = 5) phenotypes. The spleens from all Gaucher disease patients showed markedly decreased glucocerebrosidase activity. Discrimination of different phenotypes of Gaucher disease was not possible on the basis of the level of residual enzyme activity, or by measurements, using the immunopurified enzyme, of kinetic constants, pI or molecular mass forms. A severe decrease was found in the specific activity of glucocerebrosidase purified to homogeneity from the spleen of a patient with the non-neuronopathic phenotype of Gaucher disease, as compared with that of the enzyme purified from the spleen of a normal subject. This finding was confirmed by an immunological method developed for accurate assessment of the relative enzyme activity per molecule of glucocerebrosidase protein. The method revealed that the residual enzyme in the spleens of all investigated patients with a non-neuronopathic course of Gaucher disease had a more than 7-fold decreased activity of glucocerebrosidase (measured in the presence of taurocholate) per molecule of enzyme, and that the concentration of glucocerebrosidase molecules in the spleens of these patients was near normal. Observations made with immunoblotting experiments were consistent with these findings. In contrast, in the spleens of patients with neuronopathic phenotypes of Gaucher disease, the concentration of glucocerebrosidase molecules was severely decreased.

UI MeSH Term Description Entries
D007163 Immunosorbent Techniques Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody. Immunoadsorbent Techniques,Immunoadsorbent Technics,Immunosorbent Technics,Immunoadsorbent Technic,Immunoadsorbent Technique,Immunosorbent Technic,Immunosorbent Technique,Technic, Immunoadsorbent,Technic, Immunosorbent,Technics, Immunoadsorbent,Technics, Immunosorbent,Technique, Immunoadsorbent,Technique, Immunosorbent,Techniques, Immunoadsorbent,Techniques, Immunosorbent
D007526 Isoelectric Point The pH in solutions of proteins and related compounds at which the dipolar ions are at a maximum. Isoelectric Points,Point, Isoelectric,Points, Isoelectric
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010976 Platelet Count The number of PLATELETS per unit volume in a sample of venous BLOOD. Blood Platelet Count,Blood Platelet Number,Platelet Number,Blood Platelet Counts,Blood Platelet Numbers,Count, Blood Platelet,Count, Platelet,Counts, Blood Platelet,Counts, Platelet,Number, Blood Platelet,Number, Platelet,Numbers, Blood Platelet,Numbers, Platelet,Platelet Count, Blood,Platelet Counts,Platelet Counts, Blood,Platelet Number, Blood,Platelet Numbers,Platelet Numbers, Blood
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D005776 Gaucher Disease An autosomal recessive disorder caused by a deficiency of acid beta-glucosidase (GLUCOSYLCERAMIDASE) leading to intralysosomal accumulation of glycosylceramide mainly in cells of the MONONUCLEAR PHAGOCYTE SYSTEM. The characteristic Gaucher cells, glycosphingolipid-filled HISTIOCYTES, displace normal cells in BONE MARROW and visceral organs causing skeletal deterioration, hepatosplenomegaly, and organ dysfunction. There are several subtypes based on the presence and severity of neurological involvement. Cerebroside Lipidosis Syndrome,Gaucher Disease Type 1,Gaucher Disease Type 2,Glucocerebrosidase Deficiency Disease,Glucosylceramide Beta-Glucosidase Deficiency Disease,Neuronopathic Gaucher Disease,Acid beta-Glucosidase Deficiency,Acid beta-Glucosidase Deficiency Disease,Acute Neuronopathic Gaucher Disease,Chronic Gaucher Disease,GBA Deficiency,Gaucher Disease Type 3,Gaucher Disease, Acute Neuronopathic,Gaucher Disease, Acute Neuronopathic Type,Gaucher Disease, Chronic,Gaucher Disease, Chronic Neuronopathic Type,Gaucher Disease, Infantile,Gaucher Disease, Infantile Cerebral,Gaucher Disease, Juvenile,Gaucher Disease, Juvenile and Adult, Cerebral,Gaucher Disease, Neuronopathic,Gaucher Disease, Non-Neuronopathic Form,Gaucher Disease, Noncerebral Juvenile,Gaucher Disease, Subacute Neuronopathic Form,Gaucher Disease, Subacute Neuronopathic Type,Gaucher Disease, Type 1,Gaucher Disease, Type 2,Gaucher Disease, Type 3,Gaucher Disease, Type I,Gaucher Disease, Type II,Gaucher Disease, Type III,Gaucher Splenomegaly,Gaucher Syndrome,Gaucher's Disease,Gauchers Disease,Glucocerebrosidase Deficiency,Glucocerebrosidosis,Glucosyl Cerebroside Lipidosis,Glucosylceramidase Deficiency,Glucosylceramide Beta-Glucosidase Deficiency,Glucosylceramide Lipidosis,Infantile Gaucher Disease,Kerasin Histiocytosis,Kerasin Lipoidosis,Kerasin thesaurismosis,Lipoid Histiocytosis (Kerasin Type),Non-Neuronopathic Gaucher Disease,Subacute Neuronopathic Gaucher Disease,Type 1 Gaucher Disease,Type 2 Gaucher Disease,Type 3 Gaucher Disease,Cerebroside Lipidoses, Glucosyl,Cerebroside Lipidosis Syndromes,Cerebroside Lipidosis, Glucosyl,Deficiencies, GBA,Deficiencies, Glucocerebrosidase,Deficiency Disease, Glucocerebrosidase,Deficiency Diseases, Glucocerebrosidase,Deficiency, GBA,Deficiency, Glucocerebrosidase,Disease, Chronic Gaucher,Disease, Gaucher,Disease, Gaucher's,Disease, Gauchers,Disease, Glucocerebrosidase Deficiency,Disease, Infantile Gaucher,Disease, Juvenile Gaucher,Disease, Neuronopathic Gaucher,Disease, Non-Neuronopathic Gaucher,Diseases, Gauchers,Diseases, Glucocerebrosidase Deficiency,GBA Deficiencies,Gaucher Disease, Non Neuronopathic Form,Gaucher Disease, Non-Neuronopathic,Gauchers Diseases,Glucocerebrosidase Deficiencies,Glucocerebrosidase Deficiency Diseases,Glucocerebrosidoses,Glucosyl Cerebroside Lipidoses,Glucosylceramide Lipidoses,Histiocytoses, Kerasin,Histiocytoses, Lipoid (Kerasin Type),Histiocytosis, Kerasin,Histiocytosis, Lipoid (Kerasin Type),Juvenile Gaucher Disease,Kerasin Histiocytoses,Kerasin Lipoidoses,Kerasin thesaurismoses,Lipidoses, Glucosyl Cerebroside,Lipidoses, Glucosylceramide,Lipidosis Syndrome, Cerebroside,Lipidosis Syndromes, Cerebroside,Lipidosis, Glucosyl Cerebroside,Lipidosis, Glucosylceramide,Lipoid Histiocytoses (Kerasin Type),Lipoidoses, Kerasin,Lipoidosis, Kerasin,Non Neuronopathic Gaucher Disease,Splenomegaly, Gaucher,Syndrome, Cerebroside Lipidosis,Syndrome, Gaucher,Syndromes, Cerebroside Lipidosis,thesaurismoses, Kerasin,thesaurismosis, Kerasin

Related Publications

J M Aerts, and W E Donker-Koopman, and S Brul, and S Van Weely, and M C Sa Miranda, and J A Barranger, and J M Tager, and A W Schram
October 1990, Biochimica et biophysica acta,
J M Aerts, and W E Donker-Koopman, and S Brul, and S Van Weely, and M C Sa Miranda, and J A Barranger, and J M Tager, and A W Schram
January 1996, Human mutation,
J M Aerts, and W E Donker-Koopman, and S Brul, and S Van Weely, and M C Sa Miranda, and J A Barranger, and J M Tager, and A W Schram
July 1985, American journal of medical genetics,
J M Aerts, and W E Donker-Koopman, and S Brul, and S Van Weely, and M C Sa Miranda, and J A Barranger, and J M Tager, and A W Schram
November 1994, Molecular medicine (Cambridge, Mass.),
J M Aerts, and W E Donker-Koopman, and S Brul, and S Van Weely, and M C Sa Miranda, and J A Barranger, and J M Tager, and A W Schram
January 2000, Human mutation,
J M Aerts, and W E Donker-Koopman, and S Brul, and S Van Weely, and M C Sa Miranda, and J A Barranger, and J M Tager, and A W Schram
January 1984, Human genetics,
J M Aerts, and W E Donker-Koopman, and S Brul, and S Van Weely, and M C Sa Miranda, and J A Barranger, and J M Tager, and A W Schram
March 2001, American journal of medical genetics,
J M Aerts, and W E Donker-Koopman, and S Brul, and S Van Weely, and M C Sa Miranda, and J A Barranger, and J M Tager, and A W Schram
July 1979, American journal of human genetics,
J M Aerts, and W E Donker-Koopman, and S Brul, and S Van Weely, and M C Sa Miranda, and J A Barranger, and J M Tager, and A W Schram
January 2021, Iranian journal of child neurology,
J M Aerts, and W E Donker-Koopman, and S Brul, and S Van Weely, and M C Sa Miranda, and J A Barranger, and J M Tager, and A W Schram
January 2013, JIMD reports,
Copied contents to your clipboard!