Crosslinking and radiation inactivation analysis of the subunit structure of the pyridine nucleotide transhydrogenase of Escherichia coli. 1990

C Hou, and M Potier, and P D Bragg
Department of Biochemistry, University of British Columbia, Vancouver, Canada.

The pyridine nucleotide transhydrogenase of Escherichia coli consists of two types of subunit (alpha: Mr 53,906; beta: Mr 48,667). The purified and membrane-bound enzymes were crosslinked with a series of bifunctional crosslinking agents and by catalyzing the formation of inter-chain disulfides in the presence of cupric 1,10-phenanthrolinate. Crosslinked dimers alpha 2, alpha beta and beta 2, and the trimer alpha 2 beta were obtained. A small amount of tetramer, probably alpha 2 beta 2, was also formed. Radiation inactivation was used to determine the molecular size of the transhydrogenase. The radiation inactivation size (217,000) and chemical crosslinking are consistent with the structure (Mr 205,146) being the oligomer that is responsible for biological activity.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009250 NADP Transhydrogenases Enzymes that catalyze the reversible reduction of NAD by NADPH to yield NADP and NADH. This reaction permits the utilization of the reducing properties of NADPH by the respiratory chain and in the reverse direction it allows the reduction of NADP for biosynthetic purposes. NADP Transhydrogenase,Pyridine Nucleotide Transhydrogenase,Energy-Linked Transhydrogenase,NAD Transhydrogenase,NADPH NAD Transhydrogenase,NADPH Transferase,Nicotinamide Nucleotide Transhydrogenase,Energy Linked Transhydrogenase,NAD Transhydrogenase, NADPH,Nucleotide Transhydrogenase, Nicotinamide,Nucleotide Transhydrogenase, Pyridine,Transferase, NADPH,Transhydrogenase, Energy-Linked,Transhydrogenase, NAD,Transhydrogenase, NADP,Transhydrogenase, NADPH NAD,Transhydrogenase, Nicotinamide Nucleotide,Transhydrogenase, Pyridine Nucleotide,Transhydrogenases, NADP
D010618 Phenanthrolines Phenanthroline
D003037 Cobalt Radioisotopes Unstable isotopes of cobalt that decay or disintegrate emitting radiation. Co atoms with atomic weights of 54-64, except 59, are radioactive cobalt isotopes. Radioisotopes, Cobalt
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

C Hou, and M Potier, and P D Bragg
May 1978, Journal of bacteriology,
C Hou, and M Potier, and P D Bragg
February 1979, The Journal of biological chemistry,
C Hou, and M Potier, and P D Bragg
February 1995, Biochemistry and molecular biology international,
C Hou, and M Potier, and P D Bragg
October 1991, Biochimica et biophysica acta,
C Hou, and M Potier, and P D Bragg
April 1992, The Journal of biological chemistry,
C Hou, and M Potier, and P D Bragg
February 1999, Journal of bacteriology,
C Hou, and M Potier, and P D Bragg
December 1976, Biochemical and biophysical research communications,
C Hou, and M Potier, and P D Bragg
August 1986, European journal of biochemistry,
C Hou, and M Potier, and P D Bragg
June 1998, Biochimica et biophysica acta,
Copied contents to your clipboard!