Subunit interactions involved in the assembly of pyridine nucleotide transhydrogenase in the membranes of Escherichia coli. 1992

S Ahmad, and N A Glavas, and P D Bragg
Department of Biochemistry, University of British Columbia, Vancouver, Canada.

The pyridine nucleotide transhydrogenase (PNT) of Escherichia coli consists of two different subunits (alpha and beta) and assembles as a tetramer (alpha 2 beta 2) in the inner membrane. The pnt genes from E. coli have been cloned on a multicopy plasmid resulting in high level expression of the enzyme activity. We have studied the influence of the different segments of the polypeptide chains of the alpha and beta subunits on the assembly and function of the enzyme by constructing a series of deletion mutants for both of the subunits. Our results show that the assembly of the beta subunit is contingent upon the insertion of the alpha subunit into the membrane, while the alpha subunit can assemble independently of the beta subunit. All deletions constructed for the cytosolic portion of the alpha subunit gave no incorporation of the alpha subunit and, as a consequence, of the beta subunit, also. Of the four membrane-spanning regions of the alpha subunit, the last two were indispensable, while the deletion of the first two still allowed the association of alpha as well as of the beta subunit with the membrane. However, the enzyme was not functional. The two subunits were also loosely associated as mild detergent treatment released them from the membrane in contrast with the wild-type enzyme. Deletions within the beta subunit had little effect on the assembly of the alpha subunit, although less was incorporated. All deletions involving the cytosolic portion of the beta subunit resulted in loss of incorporation into the membrane. Of the eight membrane-spanning regions of the beta subunit, the deletion of regions 2-3, 2-4, 2-6, and 2-7 yielded significant association of both the subunits with the membrane. However, none of these mutants assembled a functional enzyme, and again the two subunits were loosely associated with the membrane. Based on the stringent requirement of the cytosolic portions of alpha and beta subunits for assembly, a model is proposed that suggests interactions between these two regions must occur prior to assembly.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009250 NADP Transhydrogenases Enzymes that catalyze the reversible reduction of NAD by NADPH to yield NADP and NADH. This reaction permits the utilization of the reducing properties of NADPH by the respiratory chain and in the reverse direction it allows the reduction of NADP for biosynthetic purposes. NADP Transhydrogenase,Pyridine Nucleotide Transhydrogenase,Energy-Linked Transhydrogenase,NAD Transhydrogenase,NADPH NAD Transhydrogenase,NADPH Transferase,Nicotinamide Nucleotide Transhydrogenase,Energy Linked Transhydrogenase,NAD Transhydrogenase, NADPH,Nucleotide Transhydrogenase, Nicotinamide,Nucleotide Transhydrogenase, Pyridine,Transferase, NADPH,Transhydrogenase, Energy-Linked,Transhydrogenase, NAD,Transhydrogenase, NADP,Transhydrogenase, NADPH NAD,Transhydrogenase, Nicotinamide Nucleotide,Transhydrogenase, Pyridine Nucleotide,Transhydrogenases, NADP
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction

Related Publications

S Ahmad, and N A Glavas, and P D Bragg
May 1978, Journal of bacteriology,
S Ahmad, and N A Glavas, and P D Bragg
February 1979, The Journal of biological chemistry,
S Ahmad, and N A Glavas, and P D Bragg
February 1995, Biochemistry and molecular biology international,
S Ahmad, and N A Glavas, and P D Bragg
February 1999, Journal of bacteriology,
S Ahmad, and N A Glavas, and P D Bragg
June 1979, Journal of bacteriology,
S Ahmad, and N A Glavas, and P D Bragg
October 1996, European journal of biochemistry,
S Ahmad, and N A Glavas, and P D Bragg
June 1998, Biochimica et biophysica acta,
S Ahmad, and N A Glavas, and P D Bragg
October 1991, Biochimica et biophysica acta,
Copied contents to your clipboard!