| D010363 |
Pattern Recognition, Automated |
In INFORMATION RETRIEVAL, machine-sensing or identification of visible patterns (shapes, forms, and configurations). (Harrod's Librarians' Glossary, 7th ed) |
Automated Pattern Recognition,Pattern Recognition System,Pattern Recognition Systems |
|
| D003198 |
Computer Simulation |
Computer-based representation of physical systems and phenomena such as chemical processes. |
Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer |
|
| D000465 |
Algorithms |
A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. |
Algorithm |
|
| D001185 |
Artificial Intelligence |
Theory and development of COMPUTER SYSTEMS which perform tasks that normally require human intelligence. Such tasks may include speech recognition, LEARNING; VISUAL PERCEPTION; MATHEMATICAL COMPUTING; reasoning, PROBLEM SOLVING, DECISION-MAKING, and translation of language. |
AI (Artificial Intelligence),Computer Reasoning,Computer Vision Systems,Knowledge Acquisition (Computer),Knowledge Representation (Computer),Machine Intelligence,Computational Intelligence,Acquisition, Knowledge (Computer),Computer Vision System,Intelligence, Artificial,Intelligence, Computational,Intelligence, Machine,Knowledge Representations (Computer),Reasoning, Computer,Representation, Knowledge (Computer),System, Computer Vision,Systems, Computer Vision,Vision System, Computer,Vision Systems, Computer |
|
| D001499 |
Bayes Theorem |
A theorem in probability theory named for Thomas Bayes (1702-1761). In epidemiology, it is used to obtain the probability of disease in a group of people with some characteristic on the basis of the overall rate of that disease and of the likelihood of that characteristic in healthy and diseased individuals. The most familiar application is in clinical decision analysis where it is used for estimating the probability of a particular diagnosis given the appearance of some symptoms or test result. |
Bayesian Analysis,Bayesian Estimation,Bayesian Forecast,Bayesian Method,Bayesian Prediction,Analysis, Bayesian,Bayesian Approach,Approach, Bayesian,Approachs, Bayesian,Bayesian Approachs,Estimation, Bayesian,Forecast, Bayesian,Method, Bayesian,Prediction, Bayesian,Theorem, Bayes |
|
| D015233 |
Models, Statistical |
Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. |
Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model |
|
| D016011 |
Normal Distribution |
Continuous frequency distribution of infinite range. Its properties are as follows: 1, continuous, symmetrical distribution with both tails extending to infinity; 2, arithmetic mean, mode, and median identical; and 3, shape completely determined by the mean and standard deviation. |
Gaussian Distribution,Distribution, Gaussian,Distribution, Normal,Distributions, Normal,Normal Distributions |
|