Bayesian multitask classification with Gaussian process priors. 2011

Grigorios Skolidis, and Guido Sanguinetti
School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK. G.skolidis@sms.ed.ac.uk

We present a novel approach to multitask learning in classification problems based on Gaussian process (GP) classification. The method extends previous work on multitask GP regression, constraining the overall covariance (across tasks and data points) to factorize as a Kronecker product. Fully Bayesian inference is possible but time consuming using sampling techniques. We propose approximations based on the popular variational Bayes and expectation propagation frameworks, showing that they both achieve excellent accuracy when compared to Gibbs sampling, in a fraction of time. We present results on a toy dataset and two real datasets, showing improved performance against the baseline results obtained by learning each task independently. We also compare with a recently proposed state-of-the-art approach based on support vector machines, obtaining comparable or better results.

UI MeSH Term Description Entries
D010363 Pattern Recognition, Automated In INFORMATION RETRIEVAL, machine-sensing or identification of visible patterns (shapes, forms, and configurations). (Harrod's Librarians' Glossary, 7th ed) Automated Pattern Recognition,Pattern Recognition System,Pattern Recognition Systems
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D001185 Artificial Intelligence Theory and development of COMPUTER SYSTEMS which perform tasks that normally require human intelligence. Such tasks may include speech recognition, LEARNING; VISUAL PERCEPTION; MATHEMATICAL COMPUTING; reasoning, PROBLEM SOLVING, DECISION-MAKING, and translation of language. AI (Artificial Intelligence),Computer Reasoning,Computer Vision Systems,Knowledge Acquisition (Computer),Knowledge Representation (Computer),Machine Intelligence,Computational Intelligence,Acquisition, Knowledge (Computer),Computer Vision System,Intelligence, Artificial,Intelligence, Computational,Intelligence, Machine,Knowledge Representations (Computer),Reasoning, Computer,Representation, Knowledge (Computer),System, Computer Vision,Systems, Computer Vision,Vision System, Computer,Vision Systems, Computer
D001499 Bayes Theorem A theorem in probability theory named for Thomas Bayes (1702-1761). In epidemiology, it is used to obtain the probability of disease in a group of people with some characteristic on the basis of the overall rate of that disease and of the likelihood of that characteristic in healthy and diseased individuals. The most familiar application is in clinical decision analysis where it is used for estimating the probability of a particular diagnosis given the appearance of some symptoms or test result. Bayesian Analysis,Bayesian Estimation,Bayesian Forecast,Bayesian Method,Bayesian Prediction,Analysis, Bayesian,Bayesian Approach,Approach, Bayesian,Approachs, Bayesian,Bayesian Approachs,Estimation, Bayesian,Forecast, Bayesian,Method, Bayesian,Prediction, Bayesian,Theorem, Bayes
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model
D016011 Normal Distribution Continuous frequency distribution of infinite range. Its properties are as follows: 1, continuous, symmetrical distribution with both tails extending to infinity; 2, arithmetic mean, mode, and median identical; and 3, shape completely determined by the mean and standard deviation. Gaussian Distribution,Distribution, Gaussian,Distribution, Normal,Distributions, Normal,Normal Distributions

Related Publications

Grigorios Skolidis, and Guido Sanguinetti
August 2014, Neural computation,
Grigorios Skolidis, and Guido Sanguinetti
December 2006, IEEE transactions on pattern analysis and machine intelligence,
Grigorios Skolidis, and Guido Sanguinetti
April 2023, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine,
Grigorios Skolidis, and Guido Sanguinetti
February 2010, IEEE transactions on pattern analysis and machine intelligence,
Grigorios Skolidis, and Guido Sanguinetti
January 2008, Computational intelligence and neuroscience,
Grigorios Skolidis, and Guido Sanguinetti
September 2020, Sensors (Basel, Switzerland),
Grigorios Skolidis, and Guido Sanguinetti
January 2010, Journal of probability and statistics,
Grigorios Skolidis, and Guido Sanguinetti
January 2019, IEEE/ACM transactions on computational biology and bioinformatics,
Grigorios Skolidis, and Guido Sanguinetti
November 2021, Computer methods and programs in biomedicine,
Copied contents to your clipboard!