Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component. 1990

M J Axley, and D A Grahame, and T C Stadtman
Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892.

The formate-hydrogen lyase complex of Escherichia coli decomposes formic acid to hydrogen and carbon dioxide under anaerobic conditions in the absence of exogenous electron acceptors. The complex consists of two separable enzymatic activities: a formate dehydrogenase and a hydrogenase. The formate dehydrogenase component (FDHH) of the formate-hydrogen lyase complex was purified to near homogeneity in two column chromatographic steps. The purified enzyme was composed of a single polypeptide of molecular weight 80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Metal analysis showed each mole of enzyme contained 3.3 g atoms of iron. Denaturation of FDHH released a compound which, when oxidized, displayed a fluorescence spectrum similar to that of the molybdopterin cofactor found in certain other enzymes. The enzyme contained selenium in the form of selenocysteine as determined by radioactive labeling of the enzyme with 75Se and amino acid analysis. FDHH activity was maximal between pH 7.5 and 8.5; however, the enzyme was maximally stable at pH 5.3-6.4 and highly unstable above pH 7.5. Nitrate and nitrite salts caused a drastic reduction in activity. Although azide inhibited FDHH activity, it also protected the enzyme from inactivation by oxygen.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005560 Formate Dehydrogenases Flavoproteins that catalyze reversibly the reduction of carbon dioxide to formate. Many compounds can act as acceptors, but the only physiologically active acceptor is NAD. The enzymes are active in the fermentation of sugars and other compounds to carbon dioxide and are the key enzymes in obtaining energy when bacteria are grown on formate as the main carbon source. They have been purified from bovine blood. EC 1.2.1.2. Formate Dehydrogenase,Formate Hydrogenlyases,NAD-Formate Dehydrogenase,Dehydrogenase, Formate,Dehydrogenase, NAD-Formate,Dehydrogenases, Formate,Hydrogenlyases, Formate,NAD Formate Dehydrogenase
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D006864 Hydrogenase An enzyme found in bacteria. It catalyzes the reduction of FERREDOXIN and other substances in the presence of molecular hydrogen and is involved in the electron transport of bacterial photosynthesis. Ferredoxin Hydrogenase,H2-Oxidizing Hydrogenase,Hydrogenlyase,H2 Oxidizing Hydrogenase,Hydrogenase, Ferredoxin,Hydrogenase, H2-Oxidizing

Related Publications

M J Axley, and D A Grahame, and T C Stadtman
July 1986, Proceedings of the National Academy of Sciences of the United States of America,
M J Axley, and D A Grahame, and T C Stadtman
September 1975, The Journal of biological chemistry,
M J Axley, and D A Grahame, and T C Stadtman
May 1985, Archives of microbiology,
M J Axley, and D A Grahame, and T C Stadtman
October 1991, Proceedings of the National Academy of Sciences of the United States of America,
M J Axley, and D A Grahame, and T C Stadtman
January 1984, Archives of biochemistry and biophysics,
M J Axley, and D A Grahame, and T C Stadtman
December 1994, Applied and environmental microbiology,
M J Axley, and D A Grahame, and T C Stadtman
June 1987, Archives of microbiology,
M J Axley, and D A Grahame, and T C Stadtman
February 1983, The Journal of biological chemistry,
M J Axley, and D A Grahame, and T C Stadtman
February 1999, Acta crystallographica. Section D, Biological crystallography,
M J Axley, and D A Grahame, and T C Stadtman
September 1983, Biochemistry,
Copied contents to your clipboard!