Optimization of an Escherichia coli formate dehydrogenase assay for selenium compounds. 1994

E Tschursin, and W R Wolf, and D Lacroix, and C Veillon, and K Y Patterson
Food Composition Laboratory, Beltsville Human Nutrition Research Center, Maryland 20705.

A microbiological assay to detect different chemical compounds of selenium for potential future use in the study of the distribution of these chemical forms in foods is being developed. This assay is based on the detection, by infrared analysis, of CO2 in a culture of Escherichia coli when the bacteria are grown in the presence of various selenium compounds. The CO2 production is the result of selenium-dependent formate dehydrogenase activity, which catalyzes oxidation of formic acid produced during glucose metabolism. Smooth response curves were generated over several orders of magnitude for selenocystine, selenite, and selenomethionine. The assay detects selenium concentrations (above background) as low as 1.5 nM for selenocystine and selenite and 4 nM for selenomethionine in minimal medium. Detection of selenomethionine was enhanced (to a sensitivity of 1.5 nM) by the addition of methionine to minimal medium and was enhanced even further (to a sensitivity of 0.8 nM) by the addition of a defined mixture of amino acids. Selenomethionine could be assayed in the presence of an amino acid concentration which is proportional to the amino acid/elemental selenium ratio found in a wheat gluten reference material (NIST SRM 8418). This implies that the assay can detect selenium compounds in a variety of foods at low concentrations, avoiding the background CO2 production caused by high concentrations of non-selenium-containing amino acids. The observation that methionine enhanced selenomethionine availability for formate dehydrogenase synthesis supports studies in animals demonstrating that methionine controls selenomethionine incorporation into selenoenzymes.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D003553 Cystine A covalently linked dimeric nonessential amino acid formed by the oxidation of CYSTEINE. Two molecules of cysteine are joined together by a disulfide bridge to form cystine. Copper Cystinate,L-Cystine,L Cystine
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005560 Formate Dehydrogenases Flavoproteins that catalyze reversibly the reduction of carbon dioxide to formate. Many compounds can act as acceptors, but the only physiologically active acceptor is NAD. The enzymes are active in the fermentation of sugars and other compounds to carbon dioxide and are the key enzymes in obtaining energy when bacteria are grown on formate as the main carbon source. They have been purified from bovine blood. EC 1.2.1.2. Formate Dehydrogenase,Formate Hydrogenlyases,NAD-Formate Dehydrogenase,Dehydrogenase, Formate,Dehydrogenase, NAD-Formate,Dehydrogenases, Formate,Hydrogenlyases, Formate,NAD Formate Dehydrogenase
D005983 Glutens Prolamins in the endosperm of SEEDS from the Triticeae tribe which includes species of WHEAT; BARLEY; and RYE. Gluten,Gluten Protein,Glutelin,Glutelins,Gluten Proteins,Hordein,Hordeins,Secalin,Secalins,Protein, Gluten
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D001681 Biological Assay A method of measuring the effects of a biologically active substance using an intermediate in vivo or in vitro tissue or cell model under controlled conditions. It includes virulence studies in animal fetuses in utero, mouse convulsion bioassay of insulin, quantitation of tumor-initiator systems in mouse skin, calculation of potentiating effects of a hormonal factor in an isolated strip of contracting stomach muscle, etc. Bioassay,Assay, Biological,Assays, Biological,Biologic Assay,Biologic Assays,Assay, Biologic,Assays, Biologic,Bioassays,Biological Assays
D012645 Selenomethionine Diagnostic aid in pancreas function determination. Butanoic acid, 2-amino-4-(methylseleno)-,Radioselenomethionine,Selenomethionine Se 75,Selenomethionine Hydrochloride, (S)-Isomer,Selenomethionine, (+,-)-Isomer,Selenomethionine, (R)-Isomer,Selenomethionine, (S)-Isomer,Sethotope,Se 75, Selenomethionine
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass

Related Publications

E Tschursin, and W R Wolf, and D Lacroix, and C Veillon, and K Y Patterson
July 1991, The Journal of biological chemistry,
E Tschursin, and W R Wolf, and D Lacroix, and C Veillon, and K Y Patterson
October 1991, Proceedings of the National Academy of Sciences of the United States of America,
E Tschursin, and W R Wolf, and D Lacroix, and C Veillon, and K Y Patterson
October 1990, The Journal of biological chemistry,
E Tschursin, and W R Wolf, and D Lacroix, and C Veillon, and K Y Patterson
June 1972, Journal of bacteriology,
E Tschursin, and W R Wolf, and D Lacroix, and C Veillon, and K Y Patterson
January 1982, Methods in enzymology,
E Tschursin, and W R Wolf, and D Lacroix, and C Veillon, and K Y Patterson
August 1994, Proceedings of the National Academy of Sciences of the United States of America,
E Tschursin, and W R Wolf, and D Lacroix, and C Veillon, and K Y Patterson
March 1998, Biochemistry,
E Tschursin, and W R Wolf, and D Lacroix, and C Veillon, and K Y Patterson
March 1981, Journal of bacteriology,
E Tschursin, and W R Wolf, and D Lacroix, and C Veillon, and K Y Patterson
January 1989, Archives of microbiology,
Copied contents to your clipboard!