Effect of acetone administration on renal, pulmonary and hepatic monooxygenase activities in hamster. 1990

S Menicagli, and P Puccini, and V Longo, and P G Gervasi
Istituto di Mutagenesi e Differenziamento, Consiglio Nazionale delle Ricerche, Pisa, Italy.

Administration of acetone in drinking water to Syrian Golden hamsters for 9-10 days altered microsomal P-450 dependent monooxygenase activities in the liver and the kidney but not in the lung. While hepatic microsomal NADPH-cytochrome c reductase was unaffected, cytochrome b5 and P-450 content increased (about 100%) in liver but not in kidney. Furthermore acetone treatment resulted in an increase of microsomal reverse type I binding with DMSO and in an increase in the P-450IIE1-linked renal and hepatic activities such as aniline hydroxylase (AnH) and p-nitrophenol hydroxylase (pNPH). The SDS-PAGE analysis confirmed the induction in acetone-treated microsomes of a hepatic protein with the M.W. of ethanol inducible P-450IIE1 of hamster. The acetone treatment however, unlike ethanol, induced other activities such as benzphetamine N-demethylase and ethoxycoumarin O-deethylase in liver and aminopyrine N-demethylase in kidney. No change of ethoxyresorufin O-deethylase and pentoxyresorufin O-depentylase was observed in either renal or hepatic microsomes. Addition of acetone in vitro had an inhibitory effect on pNPH by hepatic microsomes from control or acetone induced hamsters, while AnH was not affected. Interruption of acetone administration for 24 h resulted in a return of AnH and pNPH activities to essentially basal levels in the liver suggesting a rapid turnover of the hamster P-450IIE1 (ham P-450j). Our results indicate that, as found in rat, acetone is a good inducer of the P-450IIE1 (ham P-450j) in hamster in both the liver and kidney. However other P-450 forms, such as, probably, the renal and hepatic P-450IIB1, are also induced. Thus acetone-treated hamsters, which, in certain respects, show a qualitatively different induction pattern from that reported for ethanol, can be used as an useful animal model to study the toxicity of certain xenobiotics.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs

Related Publications

S Menicagli, and P Puccini, and V Longo, and P G Gervasi
February 1988, Biochemical pharmacology,
S Menicagli, and P Puccini, and V Longo, and P G Gervasi
January 1983, Arzneimittel-Forschung,
S Menicagli, and P Puccini, and V Longo, and P G Gervasi
April 1982, Research communications in chemical pathology and pharmacology,
S Menicagli, and P Puccini, and V Longo, and P G Gervasi
January 1991, Journal of experimental animal science,
S Menicagli, and P Puccini, and V Longo, and P G Gervasi
January 1989, Alcohol (Fayetteville, N.Y.),
S Menicagli, and P Puccini, and V Longo, and P G Gervasi
January 1988, Drug metabolism and disposition: the biological fate of chemicals,
S Menicagli, and P Puccini, and V Longo, and P G Gervasi
June 1980, The Biochemical journal,
S Menicagli, and P Puccini, and V Longo, and P G Gervasi
January 1987, European journal of drug metabolism and pharmacokinetics,
S Menicagli, and P Puccini, and V Longo, and P G Gervasi
September 1980, Journal of environmental pathology and toxicology,
Copied contents to your clipboard!