Expression and cellular localization of inducible nitric oxide synthase in lipopolysaccharide-treated rat kidneys. 2012

Jae-Youn Choi, and Sun-Ah Nam, and Dong-Chan Jin, and Jin Kim, and Jung-Ho Cha
Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea.

Although inducible nitric oxide synthase (iNOS) is known to play significant roles in the kidney, its renal localization has long been controversial. To resolve this issue, the authors identified iNOS-positive cell types in rat kidneys using double immunohistochemistry and confirmed iNOS positivity using enzyme histochemistry with NADPH-diaphorase (NADPH-d) and in situ RT-PCR. Adult male Sprague-Dawley rats were injected intraperitoneally with lipopolysaccharide (LPS) or saline as a control and sacrificed at various time intervals after injection. Quantitative real-time reverse transcriptase polymerase chain reaction showed that iNOS was not expressed in control kidneys but was induced in LPS-treated kidneys. iNOS immunostaining was strongest 6 to 18 hr after injection and decreased gradually to control levels by day 7. Double immunohistochemistry and NADPH-d revealed that iNOS expression was induced in the interstitial cells, glomerular parietal epithelial cells, the proximal part of the short-looped descending thin limb, the upper and middle papillary parts of the long-looped descending thin limb, some inner medullary collecting duct cells, and almost all calyceal and papillary epithelial cells. The present study determines the precise localization of iNOS in LPS-treated rat kidneys and provides an important morphological basis for examining the roles of iNOS in sepsis-induced acute kidney injury.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008297 Male Males
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D052247 Nitric Oxide Synthase Type II A CALCIUM-independent subtype of nitric oxide synthase that may play a role in immune function. It is an inducible enzyme whose expression is transcriptionally regulated by a variety of CYTOKINES. INOS Enzyme,Inducible NOS Protein,Inducible Nitric Oxide Synthase,NOS-II,Nitric Oxide Synthase II,Nitric Oxide Synthase, Type II,NOS II

Related Publications

Jae-Youn Choi, and Sun-Ah Nam, and Dong-Chan Jin, and Jin Kim, and Jung-Ho Cha
March 1997, Critical care medicine,
Jae-Youn Choi, and Sun-Ah Nam, and Dong-Chan Jin, and Jin Kim, and Jung-Ho Cha
August 1998, International journal of radiation biology,
Jae-Youn Choi, and Sun-Ah Nam, and Dong-Chan Jin, and Jin Kim, and Jung-Ho Cha
September 2002, Molecular pharmacology,
Jae-Youn Choi, and Sun-Ah Nam, and Dong-Chan Jin, and Jin Kim, and Jung-Ho Cha
October 2009, Journal of pharmacological sciences,
Jae-Youn Choi, and Sun-Ah Nam, and Dong-Chan Jin, and Jin Kim, and Jung-Ho Cha
August 1994, Clinical science (London, England : 1979),
Jae-Youn Choi, and Sun-Ah Nam, and Dong-Chan Jin, and Jin Kim, and Jung-Ho Cha
November 1997, European journal of pharmacology,
Jae-Youn Choi, and Sun-Ah Nam, and Dong-Chan Jin, and Jin Kim, and Jung-Ho Cha
January 2005, FEMS immunology and medical microbiology,
Jae-Youn Choi, and Sun-Ah Nam, and Dong-Chan Jin, and Jin Kim, and Jung-Ho Cha
September 1997, Anesthesiology,
Jae-Youn Choi, and Sun-Ah Nam, and Dong-Chan Jin, and Jin Kim, and Jung-Ho Cha
November 1994, Laboratory investigation; a journal of technical methods and pathology,
Jae-Youn Choi, and Sun-Ah Nam, and Dong-Chan Jin, and Jin Kim, and Jung-Ho Cha
September 2005, Surgery,
Copied contents to your clipboard!