Characterization of the platelet prostaglandin D2 receptor. Loss of prostaglandin D2 receptors in platelets of patients with myeloproliferative disorders. 1979

B Cooper, and D Ahern

Prostaglandin (PG) D(2) is synthesized in platelets at concentrations which could inhibit aggregation via activation of adenylate cyclase. To more directly define platelet-PG interactions, a binding assay has been developed for platelet PG receptors with [(3)H]PGD(2) as ligand. [(3)H]PGD(2) binding to intact platelets was saturable and rapid with the ligand bound by 3 min at 20 degrees C. PG competed with the [(3)H]PGD(2) binding site with a potency series: PGD(2) (IC(50) = 0.08 muM) >> PGI(2) (IC(50) = 2 muM) > PGE(1) (IC(50) = 6 muM) > PGF(2alpha) (IC(50) = 8 muM). Scatchard analysis of binding data from six normal subjects showed a single class of binding sites with a dissociation constant (K(d)) of 53 nM and 210 binding sites per platelet. This PGD(2) receptor assay was then used to study platelets from five patients with myeloproliferative disorders (polycythemia vera, essential thrombocythemia, and chronic myelogenous leukemia), as over 90% of these patients have platelets resistant to the effects of PGD(2) on aggregation and adenylate cyclase activity (1978. Blood.52: 618-626.). In the presence of 50 nM [(3)H]PGD(2), the patients' platelets bound 7.1+/-2.9 fmol ligand/10(8) platelets compared with 15.1+/-1 fmol/10(8) platelets in normals, a decrease of 53% (P < 0.01). Scatchard analysis showed that the K(d) of [(3)H]PGD(2) binding (33 nM) was comparable to normal platelets, which indicates that the decreased PGD(2) binding in these platelets represented fewer receptors rather than altered affinity of the ligand for the binding site. The 53% decrease in [(3)H]PGD(2) binding correlated with a 48% decrease in PGD(2)-activated platelet adenylate cyclase. The characterization of the platelet PGD(2) binding site provides further direct evidence that there are at least two PG receptors on platelets, one for PGE(1) and PGI(2), and a separate receptor for PGD(2). Direct binding analysis will be a useful tool for studying the role of PG in regulating platelet function, as demonstrated by the selective loss of PGD(2) binding sites in patients with myeloproliferative disorders.

UI MeSH Term Description Entries
D009196 Myeloproliferative Disorders Conditions which cause proliferation of hemopoietically active tissue or of tissue which has embryonic hemopoietic potential. They all involve dysregulation of multipotent MYELOID PROGENITOR CELLS, most often caused by a mutation in the JAK2 PROTEIN TYROSINE KINASE. Disorder, Myeloproliferative,Disorders, Myeloproliferative,Myeloproliferative Disorder
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D011457 Prostaglandins D Physiologically active prostaglandins found in many tissues and organs. They show pressor activity, are mediators of inflammation, and have potential antithrombotic effects. PGD
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011982 Receptors, Prostaglandin Cell surface receptors that bind prostaglandins with high affinity and trigger intracellular changes which influence the behavior of cells. Prostaglandin receptor subtypes have been tentatively named according to their relative affinities for the endogenous prostaglandins. They include those which prefer prostaglandin D2 (DP receptors), prostaglandin E2 (EP1, EP2, and EP3 receptors), prostaglandin F2-alpha (FP receptors), and prostacyclin (IP receptors). Prostaglandin Receptors,Prostaglandin Receptor,Receptor, Prostaglandin,Receptors, Prostaglandins,Prostaglandins Receptors
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP

Related Publications

B Cooper, and D Ahern
February 1986, Prostaglandins, leukotrienes, and medicine,
B Cooper, and D Ahern
February 1985, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
B Cooper, and D Ahern
August 1991, Prostaglandins, leukotrienes, and essential fatty acids,
B Cooper, and D Ahern
April 1979, The Journal of biological chemistry,
B Cooper, and D Ahern
October 1979, Life sciences,
B Cooper, and D Ahern
July 1979, The Journal of pharmacology and experimental therapeutics,
B Cooper, and D Ahern
September 1980, Scandinavian journal of haematology,
B Cooper, and D Ahern
February 1987, Biochimica et biophysica acta,
Copied contents to your clipboard!