Competitive interaction between foreign nerves innervating frog skeletal muscle. 1979

A D Grinnell, and M S Letinsky, and M B Rheuben

1. Competition between two foreign nerves innervating frog skeletal muscle has been studied by using pairs of somatic motor nerves (s.m.n.s) or one s.m.n. and the preganglionic splanchnic nerve (s.p.n.) implanted into a denervated sartorius muscle that has been transplanted to the lymph sac of the back. 2. A single s.m.n. implanted into the muscle succeeded in innervating essentially every fibre within 2--3 months; tetanic stimulation of the nerve elicited 9--100% of the maximal direct tetanus tension. Most of the e.p.p.s were suprathreshold, since a single indirect stimulus evoked a twitch 60--100% as large as that to a direct stimulus. 3. If two s.m.n.s were implanted simultaneously, tetanic stimulation of either elicited 80--100% of the maximal tension to direct stimulation. If one nerve was implanted 2--3 months before the other, the second, although usually less effective than the first, normally innervated 50--100% of the fibres, with approximately the same time course of innervation as a single s.m.n. 4. Mutual synaptic repression was seen on examination of twitch tensions. With either simultaneous or staggered innervation, stimulation of each s.m.n. resulted in a twitch of 30--50% of the total direct twitch tension, with little overlap between the fields driven by the two nerves. Intracellular recordings showed that the distribution of subthreshold and spike-producing e.p.p.s reflected the existence of separate twitch fields. Even if one s.m.n. was implanted several months before the other and had time to establish suprathreshold junctions on most muscle fibres, an s.m.n. implanted later was able to reduce sharply the effectiveness of many junctions from the earlier nerve while itself innervating most muscle fibres. 5. The subthreshold e.p.p.s had low quantal content, typically ten or fewer quanta/e.p.p. The min e.p.p. frequency was very low, while min e.p.p. amplitude appeared to be normal. 6. In the vast majority of muscle fibres, junctions from the two nerves were not within recording distance of each other. Hence, we infer that the competitive interaction was mediated somehow via the muscle fibre. 7. The preganglionic splanchnic nerve, which also successfully reinnervated frog skeletal muscle, competed with a foreign s.m.n. in ways which differ qualitatively from the competition by a second s.m.n. In the presence of a s.m.n., synapses of the s.p.n. were almost universally subthreshold. However, if the s.p.n. was implanted 2--3 months before the s.m.n., the s.m.n. was prevented for several months from innervating fibres driven by the s.p.n. This delay in s.m.n. reinnervation was greater than if the first nerve implanted was also an s.m.n. 8. After 6--8 months of dual innervation by s.m.n. and s.p.n., the s.m.n. became almost totally dominant. However, if the s.m.n. was then sectioned, the s.p.n. became as effective, within approximately 1 week, as it would have been in the absence of the s.m.n.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D001339 Autonomic Fibers, Preganglionic NERVE FIBERS which project from the central nervous system to AUTONOMIC GANGLIA. In the sympathetic division most preganglionic fibers originate with neurons in the intermediolateral column of the SPINAL CORD, exit via ventral roots from upper thoracic through lower lumbar segments, and project to the paravertebral ganglia; there they either terminate in SYNAPSES or continue through the SPLANCHNIC NERVES to the prevertebral ganglia. In the parasympathetic division the fibers originate in neurons of the BRAIN STEM and sacral spinal cord. In both divisions the principal transmitter is ACETYLCHOLINE but peptide cotransmitters may also be released. Autonomic Fiber, Preganglionic,Fiber, Preganglionic Autonomic,Fibers, Preganglionic Autonomic,Preganglionic Autonomic Fiber,Preganglionic Autonomic Fibers
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

A D Grinnell, and M S Letinsky, and M B Rheuben
June 1975, The Journal of physiology,
A D Grinnell, and M S Letinsky, and M B Rheuben
January 1976, Journal of neurophysiology,
A D Grinnell, and M S Letinsky, and M B Rheuben
December 1979, Nature,
A D Grinnell, and M S Letinsky, and M B Rheuben
September 1982, The Journal of physiology,
A D Grinnell, and M S Letinsky, and M B Rheuben
June 1961, The Japanese journal of physiology,
A D Grinnell, and M S Letinsky, and M B Rheuben
July 1961, The Journal of physiology,
A D Grinnell, and M S Letinsky, and M B Rheuben
May 1978, Brain research,
A D Grinnell, and M S Letinsky, and M B Rheuben
August 1990, Development (Cambridge, England),
A D Grinnell, and M S Letinsky, and M B Rheuben
April 1958, The Journal of physiology,
A D Grinnell, and M S Letinsky, and M B Rheuben
May 1987, Biophysical journal,
Copied contents to your clipboard!