Relationship between train-of-four ratio and first-twitch depression during neuromuscular blockade: a pharmacokinetic/dynamic explanation. 1990

R R Bartkowski, and R H Epstein
Department of Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.

Fade, as measured by train-of-four, lags behind twitch depression during the initial phase of nondepolarizing neuromuscular blockade, i.e., the ratio of the fourth to first twitch height in a train (T4/T1) is greater at the onset of the block than during spontaneous recovery for the same level of first twitch depression. We believe that these data can be explained by picturing the muscle as having localized regions that respond much more slowly than the rest, leading to a delay in drug effect in that area, especially when the drug concentration rises rapidly as during bolus administration. This was modeled by computer as a muscle of 15 compartments distributed in a log-normal fashion according to equilibration rate. Experimental data consisting of the time course of first twitch and train-of-four ratio were fitted by nonlinear regression to the model. A good fit was obtained with a median equilibration time t1/2 of 3.3 min and a standard deviation of 2.1. The difference between train-of-four during onset and regression of block at the same level of first twitch depression was reproduced.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009466 Neuromuscular Blocking Agents Drugs that interrupt transmission of nerve impulses at the skeletal neuromuscular junction. They can be of two types, competitive, stabilizing blockers (NEUROMUSCULAR NONDEPOLARIZING AGENTS) or noncompetitive, depolarizing agents (NEUROMUSCULAR DEPOLARIZING AGENTS). Both prevent acetylcholine from triggering the muscle contraction and they are used as anesthesia adjuvants, as relaxants during electroshock, in convulsive states, etc. Neuromuscular Blocker,Neuromuscular Blocking Agent,Neuromuscular Blockers,Agent, Neuromuscular Blocking,Agents, Neuromuscular Blocking,Blocker, Neuromuscular,Blockers, Neuromuscular,Blocking Agent, Neuromuscular,Blocking Agents, Neuromuscular
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D010197 Pancuronium A bis-quaternary steroid that is a competitive nicotinic antagonist. As a neuromuscular blocking agent it is more potent than CURARE but has less effect on the circulatory system and on histamine release. Pancuronium Bromide,Pancuronium Curamed,Pancuronium Organon,Pavulon,Bromide, Pancuronium
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

R R Bartkowski, and R H Epstein
April 1991, Acta anaesthesiologica Scandinavica,
R R Bartkowski, and R H Epstein
May 1984, Journal of the Royal Society of Medicine,
R R Bartkowski, and R H Epstein
October 2004, Chest,
R R Bartkowski, and R H Epstein
January 2000, Journal of clinical monitoring and computing,
Copied contents to your clipboard!